首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full understanding of the origin and maintenance of β-diversity patterns in a region requires exploring the relationships of both taxonomic and phylogenetic β-diversity (TBD and PBD, respectively), and their respective turnover and nestedness components, with geographic and environmental distances. Here, we simultaneously investigated all these aspects of β-diversity for angiosperms in China. Specifically, we evaluated the relative importance of environmental filtering vs dispersal limitation processes in shaping β-diversity patterns. We found that TBD and PBD as quantified using a moving window approach decreased towards higher latitudes across the whole of China, and their turnover components were correlated with latitude more strongly than their nestedness components. When quantifying β-diversity as pairwise distances, geographic and climatic distances across China together explained 60 and 53% of the variation in TBD and PBD, respectively. After the variation in β-diversity explained by climatic distance was accounted for, geographic distance independently explained about 23 and 12% of the variation in TBD and PBD, respectively, across China. Overall, our results suggest that environmental filtering based on climatic tolerance conserved across lineages is the main force shaping β-diversity patterns for angiosperms in China.  相似文献   

2.
Woody and herbaceous plants are differentially influenced by the environment, with non‐random association with the evolutionary history of these taxa and their traits. In general, woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. Here, we explored and mapped how the patterns of species richness, phylogenetic diversity, and structures of total, woody, and herbaceous plants vary across the geographical regions and with respect to 12 environmental variables across Ethiopia and Eritrea, in the horn of Africa. Our result showed that both richness and phylogenetic diversity had almost the same tendency in total woody and herbaceous plants, in which they showed positive relationships with annual precipitation, precipitation annual range of climate, all the three variables of topography, and total nitrogen and total extractable phosphorus of soil, and negative relations with mean annual temperature. Compared with the total and herbaceous plants, the environmental variables explained greater variance both in the standardized effect size phylogenetic diversity and net relatedness index for woody plants. Our results highlight that, on the large spatial scales, the environmental filtering process has played a greater role in structuring species into local communities for woody plants than for herbaceous plants.  相似文献   

3.
  1. Water pollution is one of the most serious aquatic environmental problems worldwide. In China, recent agricultural and industrial development has resulted in rapid changes in aquatic ecosystems. Here, we reveal the effects of water pollution on the phylogenetic community structure of aquatic macrophytes in the Tiaoxi River, China.
  2. We placed a rectangular plot at 47 sites within the Tiaoxi River from the mouth of the river to 88.5 km upstream, in which we recorded species abundance and measured 22 physico-chemical variables. Bayesian phylogeny using the rbcL and matK gene sequences was employed to quantify phylogenetic α- and β-diversity, and test the phylogenetic signal in four growth forms: emergent, floating-leaved, free-floating, and submerged.
  3. Within communities, water contamination and phytoplankton abundance decreased species richness and phylogenetic diversity, which resulted in phylogenetic clustering; species within communities were more closely related to each other than expected. Between communities, differences in geographical distance and phytoplankton abundance resulted in phylogenetic dissimilarity among plots. Aquatic macrophytes showed phylogenetic signals in which related species responded more similarly to disturbance.
  4. Thus, the observed patterns could be explained by environmental filtering and suggested that water pollution by human activity has added more filters to the existing environmental filters that drive the species assembly of macrophyte communities.
  相似文献   

4.
王丹  王孝安  郭华  王世雄  郑维娜  刘史力 《生态学报》2013,33(14):4409-4415
植物群落构建机制是生态学研究的热点之一.长久以来这个难题并没有得到很好的解释,且争议较多.生态位理论或中性理论,或是二者的共同作用,这样的结论在不同的研究中都有印证.以黄土高原子午岭地区的草地群落为例,对3种不同的草地群落(5a的弃耕地、阴坡和阳坡的草地)进行了野外群落学调查,采用Mantel test和主轴邻距法(PCNM)分析方法,研究了空间地理距离和环境资源差异对于草本植物群落分布的影响,结果表明:地理距离和环境差异共同解释了群落组成相似性的79.3%,剔除环境因子的影响,地理距离解释了群落组成相似性的33.8%;而剔除地理距离的影响,环境因子解释了群落组成相似性的14.2%.无论是生态位理论还是中性理论,其在黄土高原草本群落构建过程中都有作用,但中性理论扮演了更为重要的角色.  相似文献   

5.
Although species and their interactions in unison represent biodiversity and all the ecological and evolutionary processes associated with life, biotic interactions have, contrary to species, rarely been integrated into the concepts of spatial β-diversity. Here, we examine β-diversity of ecological networks by using pollination networks sampled across the Canary Islands. We show that adjacent and distant communities are more and less similar, respectively, in their composition of plants, pollinators and interactions than expected from random distributions. We further show that replacement of species is the major driver of interaction turnover and that this contribution increases with distance. Finally, we quantify that species-specific partner compositions (here called partner fidelity) deviate from random partner use, but vary as a result of ecological and geographical variables. In particular, breakdown of partner fidelity was facilitated by increasing geographical distance, changing abundances and changing linkage levels, but was not related to the geographical distribution of the species. This highlights the importance of space when comparing communities of interacting species and may stimulate a rethinking of the spatial interpretation of interaction networks. Moreover, geographical interaction dynamics and its causes are important in our efforts to anticipate effects of large-scale changes, such as anthropogenic disturbances.  相似文献   

6.
Bacteria and archaea represent the vast majority of biodiversity on Earth. The ways that dynamic ecological and evolutionary processes interact in the microbial world are, however, poorly known. Here, we have explored community patterns of planktonic freshwater bacteria inhabiting stratified lakes with oxic/anoxic interfaces and euxinic (anoxic and sulfurous) water masses. The interface separates a well-oxygenated upper water mass (epilimnion) from a lower anoxic water compartment (hypolimnion). We assessed whether or not the vertical zonation of lakes promoted endemism in deeper layers by analyzing bacterial 16S rRNA gene sequences from the water column of worldwide distributed stratified lakes and applying a community ecology approach. Community similarity based on the phylogenetic relatedness showed that bacterial assemblages from the same water layer were more similar across lakes than to communities from different layer within lakes and that anoxic hypolimnia presented greater β-diversity than oxic epilimnia. Higher β-diversity values are attributable to low dispersal and small connectivity between community patches. In addition, surface waters had significant spatial but non-significant environmental components controlling phylogenetic β-diversity patterns, respectively. Conversely, the bottom layers were significantly correlated with environment but not with geographic distance. Thus, we observed different ecological mechanisms simultaneously acting on the same water body. Overall, bacterial endemicity is probably more common than previously thought, particularly in isolated and environmentally heterogeneous freshwater habitats. We argue for a microbial diversity conservation perspective still lacking in the global and local biodiversity preservation policies.  相似文献   

7.
群落构建机制是生态学研究的核心论题。生态位理论和中性理论是阐明群落构建的两种主要理论, 但这两种理论分别强调的环境过滤和扩散限制对群落构建的影响尚存争议。该研究以黄土高原人工林下草本层群落为研究对象, 将群落物种组成数据与地理空间、气候、地形以及生物因子相结合, 运用随机森林模型(RF)和基于距离矩阵的多元回归方法(MRM), 探究了各个因子的重要性, 并通过邻体主坐标矩阵(PCNM)和基于距离的冗余分析(db-RDA)分别筛选显著的空间结构和环境因子, 最后结合筛选出的PCNM特征值和环境变量进行变差分解。研究结果显示: 1)林下草本层群落组成相似性随地理距离和生境差异的增加而减小。2)地理距离与生境差异共同解释了群落组成相似性变化的47.8%。其中, 空间因子和环境因子的独立解释率分别为14.1%和9.8%, 两者的联合解释率为23.9%。3)地理距离和年降水量是引起研究区内物种组成变化的关键因子, 且地理距离的重要性大于年降水量。在黄土高原腹地, 扩散限制与环境过滤共同主导了人工林下草本层群落的构建过程。  相似文献   

8.
Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity.  相似文献   

9.
The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules.  相似文献   

10.
Aims Spatial processes and environmental control are the two distinct, yet not mutually exclusive forces of community structuring, but the relative importance of these factors is controversial due to the species-specific dispersal ability, sensitivity towards environmental variables, organism's abundance and the effect of spatial scale. In the present paper, we explored spatial versus environmental control in shaping community composition (i.e. β-diversity) and species turnover (i.e. change of β-diversity) at an alpine meadow along a slope aspect gradient on the Qinghai–Tibetan Plateau at different spatial scales of sampling (quadrats and plots), by taking account of seed dispersal mode and abundance.Methods We examined the relative importance of spatial processes and environmental factors using all species and four additional subsets of selected species. Moreover, we attempted to explore the effect of scale (quadrat refers to scale of ~0.3 m and plot of ~8 m) on their counter balance. The data were analyzed both by variation partitioning and multiple regressions on distance matrices. The spatial structure was modelled using Moran's eigenvector maps (MEM).Important findings Both spatial processes and environmental factors were important determinants of the community composition and species turnover. The community composition in the alpine meadow was controlled by spatially structured environment (17.6%), space independent of environment (18.0%) and a negligible effect of environment independent of space (4.4%) at the scale of quadrats. These three components contributed 21.8, 9.9 and 13.9%, respectively, at the scale of plots. The balance between the forces at different spatial scales drove community structures along the slope aspect gradient. The importance of environmental factors on β-diversity at alpine meadow increased with scale while that of spatial processes decreased or kept steady, depending on dispersal mode and abundance of species comprising the subset. But the 'pure' effect of spatial processes on species turnover increased with scale while that of environmental factors decreased. This discrepancy highlights that β-diversity and species turnover were determined jointly by spatial processes and environmental factors. We also found that the relative roles of these processes vary with spatial scale. These results underline the importance of considering species-specific dispersal ability and abundance of species comprising the communities and the appropriate spatial scale in understanding the mechanisms of community assembly.  相似文献   

11.
Small soda lakes represent one of the most vulnerable ecosystem types due to their high hydrological sensitivity to climate change and anthropogenic interventions. Since diatoms are excellent bioindicators, determining the β-diversity and the structuring dynamics of diatom metacommunities can provide valuable information for conservation planning for soda pans. In this study, two diatom metacommunities were surveyed monthly during a one-year period from distinct regions of the Carpathian basin: the Fert?-Hanság National Park (FH) between 2013 and 2014, and the Danube-Tisza Interfluve (DT) between 2014 and 2015. We explored whether β-diversity of diatom assemblages in the two regions is enhanced by species turnover or nestedness (related to richness differences) and investigated the role of deterministic and stochastic processes in shaping β-diversity patterns. Furthermore, we evaluated the contribution of environmental variables, geographic distance and temporal variation to community structure. High β-diversity (>90%) was revealed for both metacommunities, and was maintained primarily by species turnover. Within the metacommunity of the DT where the natural hydrological cycle of soda pans is not disturbed, diatom communities assembled mainly due to the selection force of environment at a spatiotemporal scale. In the soda pans located in the habitat reconstruction area of the FH, besides species-sorting, significant temporal variation in community structure appeared as a result of water management and periodic water supply. Our results point to the need for a conservation management strategy which maintains the natural hydrological regime of small saline lakes, and therefore their habitat heterogeneity which is of high conservation value.  相似文献   

12.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

13.
沿长江中下游(宜昌-铜陵段)13座城市共37个位点,分别于丰水期和枯水期对岸带的湿生植物进行调查,从物种和系统发育2个维度研究群落的构建机制,并结合环境和空间因子探讨其驱动因素。结果显示:(1)丰水期湿生植物群落的α多样性高于枯水期,且丰水期α多样性主要与水分条件呈正相关,而枯水期则主要与温度和土壤总氮含量有关。(2)丰水期的系统发育结构指数呈聚集趋势,暗示生境过滤起着主导作用,而枯水期的NRI(net relatedness index)和NTI(nearest taxon index)呈不同趋势,暗示存在近期的群落分化。(3)群落的α多样性在物种层面和系统发育层面存在显著关联性,其多样性水平可在一定程度上互为表征。(4)长江中下游沿岸湿生植物群落的构建机制在不同时期存在差异,丰水期的群落构建是环境筛选和扩散限制共同作用的结果,且以环境筛选作用占主导,而枯水期的群落构建仅在物种层面受一定程度环境筛选作用的影响。(5)大生境的温度变化、微生境的土壤水分和养分条件是影响长江中下游岸带湿生植物群落差异的主要驱动因素。该研究结果可为长江中下游岸带湿地生态系统的管理和保护提供科学支持。  相似文献   

14.
Multi-facet diversity indices have been increasingly widely used in conservation ecology but congruence analyses both on horizontal and vertical axes have not yet been explored. We investigated the vertical and horizontal distributions of α and β taxonomic (TD), functional (FD) and phylogenetic diversity (PD) in a three-dimensional structured ecosystem. We focused on the Mediterranean coralligenous assemblages which form complex structures both vertically and horizontally, and are considered as the most diverse and threatened communities of the Mediterranean Sea. Although comparable to tropical reef assemblages in terms of richness, biomass and production, coralligenous assemblages are less known and more rarely studied, in particular because of their location in deep waters. Our study covers the entire range of distribution of coralligenous habitats along the French Mediterranean coasts, representing the most complete database so far developed for this important ecosystem. To our knowledge, this is the first analysis of spatial diversity patterns of marine biodiversity on both horizontal and vertical scales.Our study revealed that taxonomic diversity differed from functional and phylogenetic diversity patterns at the station level, the latter two being strongly structured by depth, with shallower stations generally richer than deeper ones. Considering all stations, phylogenetic diversity was less congruent to taxonomic diversity (Pearson's correlation of r = 0.48) but more congruent to functional diversity (r = 0.69) than randomly expected. Similar congruence patterns were revealed for stations deeper than 50 m (r = 0.44 and r = 0.84, respectively) but no significantly different congruence level than randomly expected was revealed among diversity facets for more shallow stations. Mean functional α- and β-diversity were lower than phylogenetic diversity and even lower than taxonomic α- and β-diversity for both vertical and horizontal scales. Low FD and PD values at both α- and β-diversity indicated functional and phylogenetic clustering. Community dissimilarities (β-diversity) increased over depth especially in central and eastern part of the French Mediterranean littoral and in northern Corsica, indicating coralligenous vertical structure within these regions. Overall horizontal β-diversity was higher within the 50–70 m depth belts.We conclude that taxonomic diversity alone is inadequate as a basis for setting conservation goals for this ecosystem and additional information, at least on phylogenetic diversity, is needed to preserve the ecosystem functioning and coralligenous evolutionary history. Our results highlight the necessity of considering different depth belts as a basis for regional scale conservation efforts. Current conservation approaches, such as the existing marine protected areas, are insufficient in preserving coralligenous habitats. The use of multi-facet indices should be considered, focusing on preserving local diversity patterns and compositional dissimilarities, both vertically and horizontally.  相似文献   

15.
Aims Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps.Methods Using the quadratic diversity measure based on six functional traits—specific leaf area, leaf dry matter content, plant height, leaf carbon content, leaf nitrogen content and leaf carbon to nitrogen content alongside a species-resolved phylogenetic tree—we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps.Important findings Our study highlights two main points. First, climate and land-use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land-use factors in plant functional and phylogenetic community turnover and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.  相似文献   

16.
A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance–decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change.  相似文献   

17.
18.
In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach.  相似文献   

19.
Species turnover across elevational gradients has matured into an important paradigm of community ecology. Here, we tested whether ecological and phylogenetic structure of skipper butterfly assemblages is more strongly structured according to altitude or vegetation type along three elevation gradients of moderate extent in Serra do Mar, Southern Brazil. Skippers were surveyed along three different mountain transects, and data on altitude and vegetation type of every collection site were recorded. NMDS ordination plots were used to assess community turnover and the influence of phylogenetic distance between species on apparent community patterns. Ordinations based on ecological similarity (Bray-Curtis index) were compared to those based on phylogenetic distance measures (MPD and MNTD) derived from a supertree. In the absence of a well-resolved phylogeny, various branch length transformation methods were applied together with four different null models, aiming to assess if results were confounded by low-resolution trees. Species composition as well as phylogenetic community structure of skipper butterflies were more prominently related to vegetation type instead of altitude per se. Phylogenetic distances reflected spatial community patterns less clearly than species composition, but revealed a more distinct fauna of monocot feeders associated with grassland habitats, implying that historical factors have played a fundamental role in shaping species composition across elevation gradients. Phylogenetic structure of community turned out to be a relevant additional tool which was even superior to identify faunal contrasts between forest and grassland habitats related to deep evolutionary splits. Since endemic skippers tend to occur in grassland habitats in the Serra do Mar, inclusion of phylogenetic diversity may also be important for conservation decisions.  相似文献   

20.
Biodiversity encompasses multiple facets, among which taxonomic, functional and phylogenetic aspects are the most often considered. Understanding how those diversity facets are distributed and what are their determinants has become a central concern in the current context of biodiversity crisis, but such multi‐faceted measures over large geographical areas are still pending. Here, we measured the congruence between the biogeographical patterns of freshwater fish morphological, ecological and phylogenetic diversity across Europe and identified the natural and anthropogenic drivers shaping those patterns. Based on freshwater fish occurrence records in 290 European river catchments, we computed richness and evenness for morphological, ecological and phylogenetic diversity using standardized effect sizes for each diversity index. We then used linear models including climatic, geo‐morphological, biotic and human‐related factors to determine the key drivers shaping freshwater fish biodiversity patterns across Europe. We found a weak spatial congruence between facets of diversity. Patterns of diversity were mainly driven by elevation range, climatic seasonality and species richness while other factors played a minor role. Finally, we found that non‐native species introductions significantly affected diversity patterns and influenced the effects of some environmental drivers. Morphological, ecological and phylogenetic diversity constitute complementary facets of fish diversity rather than surrogates, testifying that they deserve to be considered altogether to properly assess biodiversity. Although the same environmental and anthropogenic factors overall explained those diversity facets, their relative influence varied. In the current context of global change, non‐native species introductions may also lead to important reshuffling of assemblages resulting in profound changes of diversity patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号