首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphasic analysis of ten isolates of the red-pigmented bacteria isolated from ten Arthrospira cultures originating from different parts of the world is described. The 16S rRNA analysis showed <95 % identity with the known bacteria on public databases, therefore, additional analyses of fatty acids profiles, MALDI-TOF/MS, genome sequencing of the chosen isolate and following phylogenomic analyses were performed. Gram-stain-negative, strictly aerobic rods were positive for catalase, negative for oxidase, proteolytic and urease activity. Major fatty acids were 15 : 0 iso, 17:0 iso 3 OH and 17:1 iso w9c/16:0 10-methyl. The whole phylogenomic analyses revealed that the genomic sequence of newly isolated strain DPMB0001 was most closely related to members of Cyclobacteriaceae family and clearly indicated distinctiveness of newly isolated bacteria. The average nucleotide identity and in silico DNA–DNA hybridisation values were calculated between representative of the novel strains DPMB0001 and its phylogenetically closest species, Indibacter alkaliphilus CCUG57479 (LW1)T (ANI 69.2 % is DDH 17.2 %) and Mariniradius saccharolyticus AK6T (ANI 80.02 % isDDH 26.1 %), and were significantly below the established cut-off <94 % (ANI) and <70 % (isDDH) for species and genus delineation.The obtained results showed that the analysed isolates represent novel genus and species, for which names Arthrospiribacter gen nov. and Arthrospiribacter ruber sp. nov. (type strain DPMB0001 = LMG 31078 = PCM 3008) is proposed.  相似文献   

2.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

3.
Microbial Thiocyanate Utilization under Highly Alkaline Conditions   总被引:3,自引:1,他引:2       下载免费PDF全文
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.  相似文献   

4.
Microorganisms are central to both the beneficial (organic degradation, nutrient removal, biogas production) and detrimental (odor production, pathogen contamination) effects of swine waste storage systems. In this study, both quantitative (real-time polymerase chain reaction) and qualitative (denaturing gradient gel electrophoresis, cloning, sequence analysis) molecular analyses were used to track spatial and temporal changes in the microbial community of swine slurry from a 0.4 ha anaerobic lagoon. The lagoon, located in a region of western Kentucky which has a humid, subtropical environment, was sampled on a monthly basis (n = 10) over a period of one year at four different depths (top, 51 cm from the top, 152 cm from the top, and bottom >198 cm). The concentration and diversity of Bacteroides sp. was seasonal (up to 90% decrease between March and June). Hespellia sp. and other clostridial species, on the other hand, were endemic in the slurry (concentrations up to 1.0 × 107 cells mL?1 slurry) regardless of time of the year or lagoon depth. Results suggest that there were seasonal effects on the microbial community in the swine lagoon, while the effect of depth was not as pronounced. Seasonal changes in the microbial community in stored wastes may be (directly or indirectly) correlated with changes in malodor emissions from lagoons.  相似文献   

5.
Lili Nan  Quanen Guo 《农业工程》2018,38(5):339-344
A field experiment was conducted to assess the influences of soil chemical, physical, and biological properties of Alhagi sparsifolia community in Linze, Gaotai, and Guazhou County, Gansu province, China. Results showed that soils sampled were generally infertile with low levels of organic matter, available nitrogen, phosphorus, copper, manganese, and zinc with bacteria dominant microbial communities supporting A. sparsifolia. Available potassium and iron were sufficient in the study sites. With increasing soil layer depth, the contents of organic matter, available nitrogen, phosphorus, potassium, manganese, urease, dehydrogenase, bacteria, and actinomyces in the soil decreased significantly (P < 0.05), whereas the concentrations of moisture, available iron, and zinc in the soil increased significantly (P < 0.05). The contents of organic matter, available nitrogen, phosphorus, potassium, iron, manganese, zinc, copper, urease, dehydrogenase, bacteria, and actinomyces showed strong seasonal variations (P < 0.05). All these variables except dehydrogenase, bacteria, and actinomyces were the highest in summer and the lowest in spring. The comprehensive score of soil qualities was the greatest in Linze, medium in Guazhou, and lowest in Gaotai.  相似文献   

6.
In this paper, two microbial cultures with high decolorization efficiencies of reactive dyes were obtained and were proved to be dominant with fungi consortium in which 21 fungal strains were isolated and 8 of them showed significant decolorization effect to reactive red M-3BE. A 4.5 l continuous biofilm reactor was established using the mixed cultures to investigate the decolorization performance and the system stability under the conditions of simulated and real textile wastewater as influents. The optimal nutrient feed to this bioreactor was 0.5 g l−1 glucose and 0.1 g l−1 (NH4)2SO4 when 30 mg l−1 reactive black 5 was used as initial dye concentrations. Dye mineralization rates of 50–75% and color removal efficiencies of 70–80% were obtained at 12 h hydraulic retention time (HRT) in this case. Higher glucose concentrations in the influents could significantly improve color removal, but was not helpful for dye mineralization. Besides reactive black 5, the bioreactor could effectively decolorize reactive red M-3BE, acid red 249 and real textile wastewater with efficiency of 65%, 94% and 89%, respectively. In addition, the microbial community on the biofilm was monitored in the whole running process. The results indicated fungi as a dominant population in the decolorization system with the ratio of fungi to bacteria 6.8:1 to 51.8:1 under all the tested influent conditions. Analysis of molecular biological detection indicated that yeasts of genus Candida occupied 70% in the fungal clone library based on 26S rRNA gene sequences.  相似文献   

7.
An industrial wastewater treatment plant (WWTP) in Australia has long suffered from bulking problems associated with the proliferation of Thiothrix spp. The WWTP consists of a covered anaerobic lagoon (CAL) followed by a sequencing batch reactor (SBR). The CAL functions as both an anaerobic digester and surge lagoon for the irregular flow of wastewater generated from the production of seasonal products. Chemical analysis of the raw influent showed it was composed of a mixture of organic acids, phenols and alcohols. The CAL effluent was characterised by high acetic acid and phenolic concentrations. An attempt was made to manipulate the SBR microbial community to improve settling by direct feeding small volumes of raw influent into the SBR. After raw feeding, the plant ceased bulking as the settled sludge volume reduced from 930 to 200 mL L?1. 16S rRNA gene profiling and biovolumes of SBR samples revealed major changes in the microbial community. The Thiothrix spp. population decreased from 36.8% to 0.2%, and Zoogloea spp. dominated all samples after raw feeding. Therefore, direct feeding is proposed as a control method for industrial plants with surge/anaerobic lagoons in order to manage the bulking problems caused by Thiothrix spp. in downstream SBRs.  相似文献   

8.
A Kraft pulp mill effluent was used as the inoculum to form microbial bioanodes under controlled potential at +0.4 V/SCE. Samples were collected at the inlet and outlet of the aerated lagoon of the treatment line. The outlet sample allowed efficient bioanodes to be designed (5.1 A/m2), which included Geobacter and Desulfuromonas sp. in their microbial community. In contrast, the bioanodes formed with the inlet sample did not contain directly connecting anode-respiring bacteria and led to lower currents. It was necessary to re-form this bioanode at lower applied potential (−0.2 V/SCE) to select more efficient electroactive species and increase the current density to 5 A/m2.  相似文献   

9.
The aim of this study was to monitor the changes in methanogenic community structures in an anaerobic digester (250 m3 working volume) during start-up including prolonged starvation periods. Redundancy analysis was performed to investigate the correlations between environmental variables and microbial community structures. The anaerobic digester was operated for 591 days at alternating operating temperatures. In initial start-up period at stage I (35 °C), growth of various species of mesophilic aceticlastic methanogens (AMs) and hydrogenotrophic methanogens (HMs) was observed. Methanobacteriales species survived better than other methanogens under long-term starvation conditions. In stage II (50 °C), HMs became dominant over AMs as the operating temperature changed from mesophilic to thermophilic due to increase of ammonia inhibition. In stage III (35 °C), only the Methanomicrobiales population significantly increased during 50 days of HRT while Methanobacteriales dominated over 15 days of HRT. The influent pH negatively correlated with all methanogenic populations especially in stage II.  相似文献   

10.
In this study, a single chamber microbial fuel cell (MFC) with a rotating biocathode is developed to simultaneously remove chemical oxygen demand (COD) and nitrogen accompanying current production. Under continuous regime with a feeding COD/N ratio of 5:1, removal efficiencies of total organic carbon (TOC) and total nitrogen (TN) were 85.7 ± 7.4% and 91.5 ± 7.2%, respectively, and a maximum power output of 585 mW m?3 was yielded. In the batch tests, TN removal efficiencies for closed/open circuit were 82.1 ± 0.5% and 59.4 ± 3.3%, respectively. Cyclic voltammetry measurements demonstrated that the biocathode could efficiently catalyze nitrate reduction reaction. Autotrophic denitrification facilitated nitrogen removal using the electrode as electron donor. 16S rRNA-denaturing gradient gel electrophoresis (DGGE) was employed for community fingerprinting. At the biocathode the bacteria involved in nitrogen cycle predominated, of which the denitrifying bacteria were closely similar to Acidovorax sp. and/or Delftia sp. They were affiliated with the family Comamondaceae. The combination of rotating biological contactors with MFCs derives a promising opportunity for wastewater treatment with a low cost and high quality effluent.  相似文献   

11.
The reuse of grey water for non-potable water applications is a potential solution for water-deprived regions worldwide. Adequate treatment of grey water prior to reuse is important to reduce the risks of pathogen transmission and to improve the efficacy of subsequent disinfection. This study investigated the presence of common pathogens in grey water and compared the pathogen removal performance of leading contender treatment technologies. The opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus were detected in the grey water tested. Three configurations of constructed wetland, a membrane bioreactor (MBR), and a membrane chemical reactor (MCR) were evaluated for indicator bacteria (total coliforms, Escherichia coli, Enterococci, Clostridia, and heterotrophs) removal over a period of 2 years under conditions of low and high strength grey water influent. Total coliforms were found to be good indicators for P. aeruginosa, showing strong and significant Spearman's rank correlations in the influent grey water (rs = 0.77, P = 0.005) and treated effluents (rs = 0.81, P  0.001). The MBR provided the highest quality treated effluent and was the most robust treatment technology, remaining unaffected by an increase in influent grey water strength. Of the three constructed wetlands, the VFRB was the most reliable performer under low and high strength influent conditions, indicating aerobic unsaturated wetland to be the most suitable form of the technology for pathogen removal.  相似文献   

12.
Molecular biological methods were used to investigate the microbial diversity and community structure in intertidal sandy sediments near the island of Sylt (Wadden Sea) at a site which was characterized for transport and mineralization rates in a parallel study (D. de Beer, F. Wenzhöfer, T. Ferdelman, S.E. Boehme, M. Huettel, J.E.E. van Beusekom, M.E. Böttcher, N. Musat, N. Dubilier, Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Romo Basin, Wadden Sea, Limnol. Oceanogr. 50 (2005) 113–127). Comparative 16S rRNA sequence analysis revealed a high bacterial diversity. Most sequences retrieved by PCR with a general bacterial primer set were affiliated with Bacteroidetes, Gammaproteobacteria, Deltaproteobacteria and the Pirellula cluster of Planctomycetales. Fluorescence in situ hybridization (FISH) and slot-blot hybridization with group-specific rRNA-targeted oligonucleotide probes were used to characterize the microbial community structure over depth (0–12 cm) and seasons (March, July, October). We found high abundances of bacteria with total cell numbers up to 3×109 cells ml−1 and a clear seasonal variation, with higher values in July and October versus March. The microbial community was dominated by members of the Planctomycetes, the Cytophaga/Flavobacterium group, Gammaproteobacteria, and bacteria of the Desulfosarcina/Desulfococcus group. The high abundance (1.5×107–1.8×108 cells ml−1 accounting for 3–19% of all cells) of presumably aerobic heterotrophic polymer-degrading planctomycetes is in line with the high permeability, deep oxygen penetration, and the high rates of aerobic mineralization of algal biomass measured in the sandy sediments by de Beer et al. (2005). The high and stable abundance of members of the Desulfosarcina/Desulfococcus group, both over depth and season, suggests that these bacteria may play a more important role than previously assumed based on low sulfate reduction rates in parallel cores (de Beer et al., 2005).  相似文献   

13.
Soil physicochemical properties and microbes are essential in terrestrial ecosystems through their role in cycling mineral compounds and decomposing organic matter. This study examined the effect of stand age on soil physicochemical properties and microbial community structure in wolfberry (Lycium barbarum L.) fields, in order to reveal the mechanism of soil degradation due to long-term stand of L. barbarum. The objective of the study was achieved by phospholipid fatty acid (PLFA) biomarker analysis of soil samples from L. barbarum fields in Zhongning County, Ningxia Province—the origin of L. barbarum. Five stand ages of L. barbarum were selected, < 1, 3, 6, 9, and 12 years (three plots each). The results showed that soil bulk density increased slightly with increasing stand age, while no clear trend was observed in soil pH or total salinity. As the stand age increased, soil organic matter and nutrients first increased before decreasing, with the highest levels being found in year 9. There was an amazing variety of PLFA biomarkers in soil samples at different stand ages. The average concentrations of total, bacterial, fungal, and actinomycete PLFAs in the surface soil initially decreased and then increased, before decreasing with the stand age in summer. The PLFA concentrations of major microbial groups were highest in year 9, with the total PLFA concentrations being 32.97% and 10.67% higher than those in years < 1 and 12, respectively. Higher microbial PLFA concentrations were detected in summer relative to autumn and in the surface relative to the subsurface soil. The highest ratios of Gram-positive to Gram-negative bacterial (G?/G+) and fungal to bacterial (F/B) PLFAs were obtained in year 6, on average 76.09% higher than those at the other four stand ages. The soil environment was most stable in year 6, with no differences between other stand ages. Therefore, soil microbial community structure was strongly influenced by the stand age in year 6 only. The effect of stand age on soil G?/G+ and microbial community structure varied with season and depth; there was little effect for F/B in the 20–40 cm soil layer. Principal component analysis revealed no correlations between microbial PLFA concentrations and total salinity in the soil; negative correlations were noted between soil pH and F/B in summer (P < 0.01), as well as between soil pH and fungal PLFA in autumn (P < 0.05). Moreover, microbial PLFA concentrations were correlated with soil organic matter (mean R = 0.7725), total nitrogen (mean R = 0.8296), total phosphorus (mean R = 0.8175), available nitrogen (mean R = 0.7458), and available phosphorus (mean R = 0.7795) (P < 0.01). On the whole, the soil ecosystem was most stable in year 6, while soil organic matter, nutrients, and microbial PLFA concentrations were maximal in year 9; thereafter, soil fertility indices and microbial concentrations decreased and soil quality declined gradually as the stand age increased. Therefore, farmers should reduce the application rate of fertilizers, especially compound or mixed fertilizers, in L. barbarum fields; organic or bacterial manure can be applied increasingly to improve the soil environment and prolong the economic life of L. barbarum.  相似文献   

14.
Poultry manure contains high levels of ammonia, which result in a suboptimal bioconversion to methane in anaerobic digesters (AD). A simultaneous process of nitrification, Anammox and denitrification (SNAD) in a continuous granular bubble column reactor to treat the anaerobically digested poultry manure was implemented. Thus, two strategies to achieve high efficiencies were proposed in this study: (1) ammonia overload to suppress nitrite oxidizing bacteria (NOB) and (2) gradual adaptation of the partial nitrification–Anammox (PN–A) biomass to organic matter. During the NOB-suppression stage, microbial and physical biomass characterizations were performed and the NOB abundance decreased from 31.3% to 3.3%. During the adaptation stage, with a nitrogen loading rate of 0.34 g L−1 d−1, a hydraulic retention time of 1.24 d and an influent COD/N ratio of 2.63 ± 0.02, a maximum ammonia and total nitrogen removal of 100% and 91.68% were achieved, respectively. The relative abundances of the aerobic and the anaerobic ammonia-oxidizing bacteria were greater than 35% and 40% respectively, during the study. These strategies provided useful design tools for the efficient removal of nitrogen species in the presence of organic matter.  相似文献   

15.
The sensitivity of bacteria to the marine neurotoxins, brevetoxins, produced by the dinoflagellate Karenia brevis and raphidophytes Chattonella spp. remains an open question. We investigated the bacteriocidal effects of brevetoxin (PbTx-2) on the abundance and community composition of natural microbial communities by adding it to microbes from three coastal marine locations that have varying degrees of historical brevetoxin exposure: (1) Great Bay, New Jersey, (2) Rehoboth Bay, Delaware and (3) Sarasota Bay, Florida. The populations with limited or no documented exposure were more susceptible to the effects of PbTx-2 than the Gulf of Mexico populations which are frequently exposed to brevetoxins. The community with no prior documented exposure to brevetoxins showed significant (p = 0.03) changes in bacterial abundance occurring with additions greater than 2.5 μg PbTx-2 L−1. Brevetoxin concentrations during K. brevis blooms range from ∼2.5 to nearly 100 μg L−1 with typical concentrations of ∼10–30 μg L−1. In contrast to the unexposed populations, there was no significant decrease in bacterial cell number for the microbial community that was frequently exposed to brevetoxins, which implies variable sensitivity in natural communities. The diversity in the bacterial communities that were sensitive to PbTx-2 declined upon exposure. This suggests that the PbTx-2 was selecting for or against specific species. Mortality was much higher in the 200 μg PbTx-2 L−1 treatment after 48 h and >37% of the species disappeared in the bacterial communities with no documented exposure. These results suggest that toxic red tides may play a role in structuring bacterial communities.  相似文献   

16.
Yak and Tibetan sheep are the major indigenous ruminants on the Qinghai-Tibetan Plateau in China. The aim of this work was to study the differences in ruminal fermentation parameters and rumen prokaryotic community composition between hosts and feeding paradigms. The 16S rRNA genes targeting bacteria and archaea were sequenced using the MiSeq platform. The results showed that the prokaryotic community structure between yak and Tibetan sheep was significantly different (P < 0.01). A significant difference in structure was also found between groups of yaks barn fed with a total mixed ration (TMR) and those naturally grazing (NG) (P = 0.034), as well as for Tibetan sheep of the two groups (P = 0.026). The core prokaryotic populations that existed in the rumen mostly dominated the structure. There was an obvious correlation of the prokaryotic community composition at the phylum and genus levels with the host or the feeding pattern. In addition, Tibetan sheep showed significantly higher yields of volatile fatty acids (VFAs) than yak, as did the NG group compared with the TMR group. In conclusion, both the host and feeding pattern may influence rumen microbial ecology system, with host effects being more important than those of the feeding pattern.  相似文献   

17.
The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera, Methanolinea, Thermogymnomonas, Methanoregula, Methanomethylovorans, and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.  相似文献   

18.
《Process Biochemistry》2014,49(2):301-308
Food waste leachate (FWL) from the food waste recycling facilities in Korea is a serious environmental problem. Much research was done on anaerobic digestion of FWL in a lab-scale; however, there is little information on a large scale anaerobic digestion system (ADS). In this study, a two-phase ADS in a pilot scale was operated using FWL and the ADS performance and microbial structure dynamics using pyrosequencing were investigated. The ADS was operated for 136 days using FWL containing a high concentration of volatile fatty acid (12,435 ± 2203 mg/L), exhibiting volatile acid (VS) removal efficiency of 74–89% and CH4 yield of 0.39–0.85 Nm3/kg of reduced VS. The microbial structure at 76, 101, and 132 days indicated the methanogen population shift from acetoclastic methanogens (Methanosarcina and Methanosaeta) to hydrogenotrophic methanogens (Methanobacterium and Methanoculleus). The bacterial community also shifted to the taxa syntrophically related with hydrogenotrophic methanogens (Clostridia). The statistical analysis revealed the positive correlation of VS removal efficiency with Methanosarcina, but the negative correlation with Methanobacterium. The results presented here suggest that acetoclastic methanogens and their associated bacteria were more efficient for VS removal in the pilot scale ADS system, providing useful information for FWL treatment in a large scale ADS.  相似文献   

19.
20.
Grassland desertification seriously threatens economic and social sustainable development. How to control grassland desertification, and even to restore and reconstruct grassland has been paid much attention. Vegetation restoration is considered to be a very effective solution. Soil contains an immense diversity of microbes, and the characteristics of soil microbial communities are sensitive indicators of soil. It is important to understand the relationship between vegetation and soil microbial diversity during the restoration process. Based on Biolog-Eco technology, a case study was carried out to investigate the effects of five different vegetation restoration patterns on soil microbial functional diversity after four years in sandy land in Hulunbeier, China. The five vegetation restoration patterns included mono-cultivar planting of Agropyron cristatum (UA), mono-cultivar planting of Hedysarum fruticosum (UH), mono-cultivar planting of Caragana korshinskii (UC), and mixed-cultivar planting of A. cristatum and H. fruticosum (AC), mixed-cultivar planting of A. cristatum, H. fruticosum, C. korshinskii and Elymus nutans (ACHE). Completely degraded sandy land was used as control.The results indicated that the vegetation restoration significantly increased soil microbial activity. The Average Well Color Development (AWCD), which represents soil microbial metabolic activity, followed the order of UC > UH > UA > ACHE > AC > control. AWCD of five vegetation restoration patterns were all higher than that of control, and the highest soil microbial metabolic activity in mono-cultivar planting of C. korshinskii treatment was found. Five vegetation restoration patterns resulted in significant increase in Shannon index (H), evenness (E) and Simpson’s Dominance (D) of soil microbial community. Greater Shannon index and Simpson’s Dominance was observed in UC treatment than in other four vegetation restoration treatments and control. ACHE treatment had the highest evenness index (E) of soil microbial community. The principal component analysis (PCA) indicated a similar mode in carbon utilization for soil microbial community of UA, AC, ACHE and CK. However, UH and UC treatments had special carbon utilization mode. Treatments of UA, AC, ACHE and CK concentrated in the negative direction of the first principal component. Conversely, treatments of UH and UC concentrated in the positive direction of the first and second principal component respectively. The carbon sources mostly used by soil microbes were carbohydrates, amino acids, metabolic mediates and secondary metabolites. Therefore, vegetation restoration enhanced the metabolic activity and functional diversity of microbial community in sandy soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号