首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 27Fusarium culmorum isolates from Germany and 41F. graminearum isolates from Kenya were investigated for aggressiveness and mycotoxin production on wheat ears. In addition, ergosterol content of the kernels from ears inoculated withF. graminearum was determined and theF. culmorum isolates were tested for mycotoxin productionin vitro. For both pathogens, isolates markedly differed in aggressiveness. 59% and 37% of theF. culmorum isolates produced NIV and DON, respectively,in vivo andin vitro. The DON-producing isolates also produced 3-acDONin vitro. The more aggressive isolates produced mainly DON while the less aggressive isolates produced mainly NIV. 12% and 85% of theF. graminearum isolates produced NIV and DON, respectively. The highly aggressive isolates produced higher amounts of DON, aggressiveness being highly correlated to DON content in the kernels. NIV-producing isolates were less aggressive. Ergosterol content of kernels was moderately correlated to aggressiveness but highly correlated to DON content. Disease severity was associated with kernel weight reduction.  相似文献   

2.
Fusarium graminearum clade species are among the main causative agents of Gibberella ear rot (GER) in maize and responsible for the various trichothecene mycotoxins accumulated in contaminated maize grains. In this study, a total of 620 isolates from diseased maize ears collected from 59 districts in 19 provinces throughout China, previously identified morphologically as Fusarium graminearum clade, was genetically characterized at the species level based on SCAR (Sequence Characterized Amplified Region) and for their potential capability of mycotoxin production using the genetic chemotyping assay. The results showed that 359 isolates were F. asiaticum (SCAR 5), which consisted of 97% nivalenol (NIV)‐chemotypes, 0.8% 3‐acetyldeoxynivalenol (3‐ADON)‐producing isolates and 2.2% 15‐acetyldeoxynivalenol (15‐ADON) producers, whereas the remaining 261 isolates were identified as F. graminearum sensu stricto (SCAR 1), all of which produced 15‐ADON mycotoxins. This high proportion of NIV producers present in F. asiaticum is different from the chemotype patterns in F. asiaticum populations isolated from wheat and barley, where DON and its acetylated chemotypes were the predominant mycotoxins. Moreover, the majority of NIV producers (59.1%) and all the 3‐ADON‐producing strains were derived from the warmer regions in southern China, whereas most of the 15‐ADON‐producing strains (78.4%) were isolated from the colder regions in northern China. Our study is the first report of NIV chemotypes of F. asiaticum and 15‐ADON chemotypes of F. graminearum sensu stricto that were associated with the GER of maize in China.  相似文献   

3.
Aggressiveness in four isolates of Fusarium head blight (FHB) species (F. culmorum, F. solani, F. verticillioides and F. equiesti) was studied in vitro on six wheat cultivars using a modified Petri-dish test. Results showed differences between cultivars inoculated with FHB isolates and control for three aggressiveness criteria: germination rate reduction, standardised area under disease progress curve (AUDPCstandard), and coleoptile length reduction. Regarding AUDPCstandard and Petri-dish aggressiveness index, significant differences were detected among fungal isolates. The other two aggressiveness criteria: germination rate reduction and coleoptile length reduction did not distinguish between FHB isolates. The Petri-dish test was repeatable and stable method to assess aggressiveness of four FHB species for all tested wheat cultivars. The current study confirmed the suitability of in vitro modified Petri-dish method to be used as fast and reliable test to analyse aggressiveness in FHB species.  相似文献   

4.
Fusarium graminearum (teleomorph, Gibberella zeae) is the predominant causal agent of Fusarium head blight (FHB) of wheat resulting in yearly losses through reduction in grain yield and quality and accumulation of fungal generated toxins in grain. Numerous fungal genes potentially involved in virulence have been identified and studies with deletion mutants to ascertain their role are in progress. Although wheat field trials with wild-type and mutant strains are critical to understand the role these genes may play in the disease process, the interpretation of field trial data is complicated by FHB generated by indigenous species of F. graminearum. This report describes the development of a SYBR green-based real time PCR assay that quantifies the total F. graminearum genomic DNA in a plant sample as well as the total F. graminearum genomic DNA contributed from a strain containing a common fungal selectable marker used to create deletion mutants. We found our method more sensitive, reproducible and accurate than other similar recently described assays and comparable to the more expensive probe-based assays. This assay will allow investigators to correlate the amount of disease observed in wheat field trials to the F. graminearum mutant strains being examined.  相似文献   

5.
Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.  相似文献   

6.
《Fungal biology》2020,124(9):753-765
The cereal infecting fungus Fusarium graminearum is predicted to possess a single homologue of plant RALF (rapid alkalinisation factor) peptides. Fusarium mutant strains lacking FgRALF were generated and found to exhibit wildtype virulence on wheat and Arabidopsis floral tissue. Arabidopsis lines constitutively overexpressing FgRALF exhibited no obvious change in susceptibility to F. graminearum leaf infection. In contrast transient virus-mediated over-expression (VOX) of FgRALF in wheat prior to F. graminearum infection, slightly increased the rate of fungal colonisation of floral tissue. Ten putative Feronia (FER) receptors of RALF peptide were identified bioinformatically in hexaploid wheat (Triticum aestivum). Transient silencing of two wheat FER homoeologous genes prior to F. graminearum inoculation did not alter the subsequent interaction outcome. Collectively, our VOX results show that the fungal RALF peptide may be a minor contributor in F. graminearum virulence but results from fungal gene deletion experiments indicate potential functional redundancy within the F. graminearum genome. We demonstrate that virus-mediated over-expression is a useful tool to provide novel information about gene/protein function when results from gene deletion/disruption experimentation were uninformative.  相似文献   

7.
8.
The antagonistic effects of Lactobacillus against pathogenic bacteria were evaluated in vitro on cultured Caco-2 cells. Lactobacilli were added simultaneously with enteric pathogenic strains (enterotoxigenic Escherichia coli K88 or Salmonella typhimurium SARB21 and SL1344), before pathogenic strains and after pathogenic strains for competition, exclusion and displacement assays. The six lactobacilli significantly limited the adhesion and invasion of the pathogenic bacteria. In the simulating competition and exclusion assays, the adhesion of pathogenic strains was reduced by Lactobacillus strains significantly, whereas the inhibiting effect on pathogenic strains adhesion was a little weaker in the displacement assay. Furthermore, we found that the antagonistic effects of lactobacilli against K88, SARB21, and SL1344 were various. Strain R4 showed a strong inhibitory effect on the adhesion of K88 to Caco-2 cells. In the competition assay of R4, the number of viable cell-associated K88 (3.84 ± 0.10 log CFU/well) was much lower than the control group without Lactobacillus (5.98 ± 0.02 log CFU/well). Compared to the control group (6.07 ± 0.02 log CFU/well), the six Lactobacillus strains all performed strong antagonistic effects against SL1344, particularly D17 showed a higher inhibitory effect in the displacement assays (4.15 ± 0.04 log CFU/well). These results implied that several Lactobacillus strains might be useful for protecting against enteric pathogenic infection.  相似文献   

9.
Genetic chemotyping is an essential tool for characterizing Fusarium populations causing head blight on wheat and other cereals. Three PCR methods, based on tri cluster polymorphism, were optimized and compared on 94 single‐spore isolates obtained from three continents belonging to F. gramineaurm, F. culmorum, F. poae, F. avenaceum and Microdochium nivale. While the methods based on the tri3, tri7 and tri12 polymorphism correctly identified all the tested strains, the method based on tri13 polymorphism was unable to discriminate between the 3‐ and 15‐acetylated DON forms in F. graminearum. It is advised to avoid the use of tri13 polymorphism for genetic chemotyping of the two acetylated chemotypes.  相似文献   

10.
Fusarium head blight (FHB) caused by Fusarium graminearum and F. culmorum is a devastating disease with high effects on grain yield and quality. We developed spring wheat lines incorporating the highly effective FHB resistance quantitative trait loci (QTL) Fhb1 and Qfhs.ifa‐5A. Whether these QTL lead to competition within Fusarium populations in the field resulting in isolates with higher aggressiveness has not been analysed. The aims of this study were to determine (i) the aggressiveness potential of F. graminearum and F. culmorum isolates, (ii) competition effects of these isolates in binary mixtures and (iii) the stability of resistant hosts. Six F. graminearum, two F. culmorum isolates and seven binary mixtures containing these isolates were tested for their aggressiveness and mycotoxin production at two locations in South Germany in 2007 and 2008. Host lines were four spring wheat lines containing the resistance QTL Fhb1 and/or Qfhs.ifa‐5A or none of them and one standard variety. Re‐isolates were sampled from plots inoculated with the binary mixtures to identify the percentage of each isolate in the mixture by simple sequence repeat markers. Resistant host lines reacted as expected and had a high stability to all isolates and mixtures. Only less important host × mixture interactions were detected. Aggressiveness among isolates and mixtures was significantly different. Type and amount of mycotoxin and high single isolate aggressiveness were not necessarily advantageous in the mixture. However, both F. culmorum isolates outcompeted F. graminearum isolates. Significant deviations from the inoculated 1 : 1 proportions occurred in 34 of 49 cases, illustrating that competition effects appeared in the mixtures. These differences depended mainly on the year and not on the level of host resistance. We conclude that resistance should not be affected by the Fusarium isolates and mixtures.  相似文献   

11.
Fusarium head blight (FHB) caused by several Fusarium species is one of the most serious diseases affecting wheat throughout the world. The efficiency of microbiological assays and real-time PCR to quantify major FHB pathogens in wheat ears after inoculation with F. graminearum, F. culmorum, F. avenaceum and F. poae under greenhouse and field conditions were evaluated. The frequency of infected kernel, content of fungal biomass, disease severity and kernel weight were determined. To measure the fungal biomass an improved DNA extraction method and a Sybr® Green real-time PCR were developed. The Sybr® Green real-time PCR proved to be highly specific for individual detection of the species in a matrix including fungal and plant DNA. The effect of Fusarium infection on visible FHB severity, frequency of infected kernels and thousand-kernel mass (TKM) significantly depended on the Fusarium species/isolate. F. graminearum resulted in highest disease level, frequency of infected kernels, content of fungal biomass, and TKM reduction followed by F. culmorum, F. avenaceum and F. poae, respectively. The comparison of frequency and intensity of kernel colonization proved differences in aggressiveness and development of the fungi in the kernels. Only for F. graminearum, the most aggressive isolate, application of microbiological and real-time PCR assays gave similar results. For the other species, the intensity of kernel colonization was lower than expected from the frequency of infection.  相似文献   

12.
Sexual spores (ascospores) of Fusarium graminearum, a homothallic ascomycetous fungus, are believed to be the primary inocula for epidemics of the diseases caused by this species in cereal crops. Based on the light requirement for the formation of fruiting bodies (perithecia) of F. graminearum under laboratory conditions, we explored whether photoreceptors play an important role in sexual development. Here, we evaluated the roles of three genes encoding putative photoreceptors [a phytochrome gene (FgFph) and two white collar genes (FgWc-1 and FgWc-2)] during sexual development in F. graminearum. For functional analyses, we generated transgenic strains lacking one or two genes from the self-fertile Z3643 strain. Unlike the wild-type (WT) and add-back strains, the single deletion strains (ΔFgWc-1 and ΔFgWc-2) produced fertile perithecia under constant light on complete medium (CM, an unfavorable medium for sexual development) as well as on carrot agar (a perithecial induction condition). The expression of mating-type (MAT) genes increased significantly in the gene deletion strains compared to the WT under both conditions. Deletion of FgFph had no significant effect on sexual development or MAT gene expression. In contrast, all of the deletion strains examined did not show significant changes in other traits such as hyphal growth, mycotoxin production, and virulence. A split luciferase assay confirmed the in vivo protein-protein interactions among three photoreceptors along with FgLaeA, a global regulator of secondary metabolism and fungal development. Introduction of an intact copy of the A. nidulans LreA and LreB genes, which are homologs of FgWc-1 and FgWc-2, into the ΔFgWc-1 and ΔFgWc-2 strains, respectively, failed to repress perithecia formation on CM in the gene deletion strains. Taken together, these results demonstrate that FgWc-1 and FgWc-2, two central components of the blue-light sensing system, negatively regulate sexual development in F. graminearum, which differs from the regulation pattern in A. nidulans.  相似文献   

13.
14.
One hundred and eighty isolates of Rhizoctonia solani AG1‐IA, the causal agent of rice sheath blight, were obtained from six locations in southern China. The genetic structure of R. solani isolates was investigated using random amplified polymorphic DNA (RAPD) markers, and a considerable genetic variation among R. solani isolates was observed. Most of the genetic diversity was distributed within populations, rather than among them. The distribution pattern of the genetic variation of R. solani appears to be the result of high gene flow (Nm) and low‐genetic differentiation among populations. The aggressiveness of R. solani was visually assessed by rice seedlings of five different cultivars in the glasshouse. All isolates tested were found to induce significantly different levels of disease severity, reflecting considerable variation in aggressiveness. The isolates were divided into highly virulent, moderately virulent and weakly virulent groups, and the moderately virulent isolates were dominant in R. solani population. No significant correlation was observed among the genetic similarity, pathogenic aggressiveness and geographical origins of the isolates. Information obtained from this study may be useful for breeding for improved resistance to sheath blight.  相似文献   

15.
The antagonistic activity of two yeast strains (Pichia anomala (E.C. Hansen) Kurtzman, strain K and Candida oleophila Montrocher, strain O) against the parasitic complex responsible for banana crown rot was evaluated. The strains were applied at three different concentrations (106, 107, 108 cfu/ml) and their efficacy tested in vivo on three separate fungi (Colletotrichum musae (Berk. & Curt.) Arx, Fusarium moniliforme Sheldon, and Cephalosporium sp.) and on a parasitic complex formed by association of these three fungi. At the concentrations used C. musae appeared to be the most pathogenic. The complex showed intermediate aggressiveness between C. musae and both other fungi.Statistically significant antagonistic effects were observed on C. musae, F. moniliforme, and the fungal complex. The highest protection level (54.4%) was observed with strain O added at 108 cfu/ml on crowns previously inoculated with the fungal complex. The level was lower when the fungi were inoculated separately.Furthermore, the antagonistic effect was strongly reinforced when strain O at 108 cfu/ml was applied 24 h before fungal complex inoculation (59.9%), as compared to its application 15 min (24.3%) or 3 h (27.3%) after fungal complex inoculation. Bananas showed increased susceptibility to the fungal complex from March to June, and this influenced the level of protection by yeast, which decreased over the same period. A strict negative correlation (R2 = 0.83) was highlighted between susceptibility of banana to crown rot and protection provided by yeast.  相似文献   

16.
A large number of isolates from the Fusarium graminearum clade representing all regions in China with a known history of Fusarium head blight (FHB) epidemics in wheat were assayed using PCR to ascertain their trichothecene mycotoxin chemotypes and associated phylogenetic species and geographical distribution. Of the 299 isolates assayed, 231 are from F. asiaticum species lineage 6, which produce deoxynivalenol and 3-acetyldeoxynivalenol (3-AcDON); deoxynivalenol and 15-acetyldeoxynivalenol (15-AcDON); and nivalenol and 4-acetylnivalenol (NIV) mycotoxins, with 3-AcDON being the predominant chemotype. Ninety-five percent of this species originated from the warmer regions where the annual average temperatures were above 15 °C, based on the climate data of 30 y during 1970–1999. However, 68 isolates within F. graminearum species lineage 7 consisted only of 15-AcDON producers, 59 % of which were from the cooler regions where the annual average temperatures were 15 °C or lower. Identification of a new subpopulation of 15-AcDON producers revealed a molecular distinction between F. graminearum and F. asiaticum that produce 15-AcDON. An 11-bp repeat is present in F. graminearum within their Tri7 gene sequences but is absent in F. asiaticum, which could be directly used for differentiating the two phylogenetic species of the F. graminearum clade.  相似文献   

17.
18.
Fusarium graminearum is an important fungal pathogen of cereal crops and produces mycotoxins, such as the trichothecenes nivalenol and deoxynivalenol. This species may be subdivided into a series of genetic lineages or phylogenetic species. We identified strains of F. graminearum from the Republic of Korea to lineage, tested their ability to produce nivalenol and deoxynivalenol, and determined the genetic composition and structure of the populations from which they were recovered. Based on amplified fragment length polymorphism (AFLP), PCR genotyping, and chemical analyses of trichothecenes, all 249 isolates from southern provinces belonged to lineage 6, with 241 having the nivalenol genotype and 8 having the deoxynivalenol genotype. In the eastern Korea province, we recovered 84 lineage 6 isolates with the nivalenol genotype and 23 lineage 7 isolates with the deoxynivalenol genotype. Among 333 lineage 6 isolates, 36% of the AFLP bands were polymorphic, and there were 270 multilocus haplotypes. Genetic identity among populations was high (>0.972), and genotype diversity was low (30 to 58%). To test the adaptation of lineage 6 to rice, conidial mixtures of strains from lineages 3, 6, and 7 were inoculated onto rice plants and then recovered from the rice grains produced. Strains representing lineages 6 and 7 were recovered from inoculated spikelets at similar frequencies that were much higher than those for the strain representing lineage 3. Abundant perithecia were produced on rice straw, and 247 single-ascospore isolates were recovered from 247 perithecia. Perithecia representing lineage 6 (87%) were the most common, followed by those representing lineage 7 (13%), with perithecia representing lineage 3 not detected. These results suggest that F. graminearum lineage 6 may have a host preference for rice and that it may be more fit in a rice agroecosystem than are the other lineages present in Korea.Fusarium graminearum (teleomorph: Gibberella zeae) causes head blight of small grains, including rice, wheat, and barley (23). The fungus was first reported on rice in Italy by Cattaneo (4) as Botryosphaeria saubinetii Niessland. This rice disease has since been recorded in other countries, including Brazil, China, India, Japan, Nepal, and Uganda (11, 31). The disease usually does not cause heavy damage, but under conditions that favor disease development, e.g., high humidity, it may be severe. Chung et al. (7) found that an isolate from wheat could infect rice and other plants and also could cause a postemergence blight in rice. Wheat isolates of F. graminearum can cause significant disease on rice, but under greenhouse conditions no trichothecenes were detected in the infected rice florets (14). In addition, Nepalese rice contained no detectable contamination with trichothecenes even though F. graminearum occurs in Nepal (11).The fungus can produce the 8-ketotrichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON). Most of the biosynthetic genes for the synthesis of 8-ketotrichothecenes are tightly linked in the TRI gene cluster (9). TRI7 and TRI13 are required for acetylation and oxygenation of the oxygen at C-4 to produce NIV and 4-acetyl nivalenol (4-ANIV), respectively, from DON. PCR-based methods to identify polymorphisms in both genes were developed as simple, reliable diagnostic tools for differentiating strains with DON and NIV chemotypes (20, 21). There are regional differences in the distribution of the two chemotypes. Maize and wheat in North America and Europe commonly are contaminated with DON (9), while strains with NIV chemotypes are commonly recovered from cereal crops in Asia (15, 17). In the Republic of Korea, strains with the DON chemotype often cause maize ear rot, while strains with the NIV chemotype commonly are recovered from barley (17, 35). A severe epidemic of Fusarium head blight on wheat and barley occurred in 1963 in southern Korea (5, 6). Humans and farm animals consuming moldy cereals exhibited typical signs of trichothecene intoxication involving vomiting, dizziness, nausea, abnormal pain, and diarrhea (9). The natural occurrence of NIV and DON has been reported in barley and maize in Korea (17, 35, 41), but there have been few surveys of Fusarium mycotoxins in Korean rice.O''Donnell et al. (30) divided F. graminearum into seven phylogenetic lineages based on the genealogical concordance of six genes. The phylogenetic separation has been used to raise these seven and four additional lineages to species status (36). The geographic location often influences the lineage present, e.g., lineage 7 is the most common in the United States, and lineage 6 dominates in China. Lineage and trichothecene chemotype are not correlated (45), and the lineages are morphologically cryptic. Members of all lineages are cross-fertile with strains belonging to lineage 7 and in some cases with strains of other lineages (1, 2, 19, 25), a pattern that suggests that the members of all of the lineages belong to a single biological species.Studies of F. graminearum populations have been made in different geographic regions, e.g., China (12), Europe (42), the United States (48, 49), and Argentina (34). Populations of F. graminearum have high levels of genotypic diversity, which suggests that recombination occurs regularly in F. graminearum populations. Most studies have focused on populations from wheat, barley, and corn, and there is little information on F. graminearum populations from rice.Severe epidemics of Fusarium head blight of rice occurred in August 2001 after heavy rainfall during the rice flowering period in southern Korea. Lesions on or discoloration of the glumes were common, with infected grains first appearing to be white and later yellow, salmon, or carmine. Sometimes the entire seed was colonized. Infected grains were lightweight, shrunken, and brittle. Our objectives in the present study were (i) to determine the frequency at which F. graminearum occurs in plants with rice head blight; (ii) to determine the number and relative frequency of the F. graminearum lineages present; and (iii) to evaluate the strains for their sexual fertility, genetic relatedness, virulence, and toxin-producing abilities. Our working hypotheses were that sexually fertile strains from lineage 6 would dominate in the population and that these strains would be the most aggressive toward rice. We expected most of the lineage 6 strains to produce NIV and for there to be a high level of genetic variation, as assessed by neutral (amplified fragment length polymorphism [AFLP]) markers. We evaluate here F. graminearum population diversity in Korea and provide new information on the pathogenic capabilities of strains belonging to several of the known lineages of this very widespread fungal species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号