首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one.  相似文献   

2.
HIV-1 mutations, which reduce or abolish CTL responses against virus-infected cells, are frequently selected in acute and chronic HIV infection. Among population HIV-1 sequences, immune selection is evident as human leukocyte antigen (HLA) allele-associated substitutions of amino acids within or near CD8 T-cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes, which lead to the formation of a new T-cell epitope, suggesting that the immune responses that these variants or 'neo-epitopes' elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined the functional characteristics of eight CD8 T-cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterized immunodominant epitopes restricted by common HLA alleles, and in most cases the T-cell responses against the neo-epitope showed significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes, but were not more cytotoxic. Neo-epitope formation and emergence of cognate T-cell response coincident with a rise in viral load was then observed in vivo in an acutely infected individual. These findings show that HIV-1 adaptation not only abrogates the immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T-cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences.  相似文献   

3.
One aim for an HIV vaccine is to elicit neutralizing antibodies (Nab) that can limit replication of genetically diverse viruses and prevent establishment of a new infection. Thus, identifying the strengths and weaknesses of Nab during the early stages of natural infection could prove useful in achieving this goal. Here we demonstrate that viral escape readily occurred despite the development of high titer autologous Nab in two subjects with acute/early subtype C infection. To provide a detailed portrayal of the escape pathways, Nab resistant variants identified at multiple time points were used to create a series of envelope (Env) glycoprotein chimeras and mutants within the background of a corresponding newly transmitted Env. In one subject, Nab escape was driven predominantly by changes in the region of gp120 that extends from the beginning of the V3 domain to the end of the V5 domain (V3V5). However, Nab escape pathways in this subject oscillated and at times required cooperation between V1V2 and the gp41 ectodomain. In the second subject, escape was driven by changes in V1V2. This V1V2-dependent escape pathway was retained over time, and its utility was reflected in the virus''s ability to escape from two distinct monoclonal antibodies (Mabs) derived from this same patient via introduction of a single potential N-linked glycosylation site in V2. Spatial representation of the sequence changes in gp120 suggested that selective pressure acted upon the same regions of Env in these two subjects, even though the Env domains that drove escape were different. Together the findings argue that a single mutational pathway is not sufficient to confer escape in early subtype C HIV-1 infection, and support a model in which multiple strategies, including potential glycan shifts, direct alteration of an epitope sequence, and cooperative Env domain conformational masking, are used to evade neutralization.  相似文献   

4.
A small proportion of HIV-infected individuals generate a neutralizing antibody (NAb) response of exceptional magnitude and breadth. A detailed analysis of the critical epitopes targeted by broadly neutralizing antibodies should help to define optimal targets for vaccine design. HIV-1-infected subjects with potent cross-reactive serum neutralizing antibodies were identified by assaying sera from 308 subjects against a multiclade panel of 12 "tier 2" viruses (4 each of subtypes A, B, and C). Various neutralizing epitope specificities were determined for the top 9 neutralizers, including clade A-, clade B-, clade C-, and clade A/C-infected donors, by using a comprehensive set of assays. In some subjects, neutralization breadth was mediated by two or more antibody specificities. Although antibodies to the gp41 membrane-proximal external region (MPER) were identified in some subjects, the subjects with the greatest neutralization breadth targeted gp120 epitopes, including the CD4 binding site, a glycan-containing quaternary epitope formed by the V2 and V3 loops, or an outer domain epitope containing a glycan at residue N332. The broadly reactive HIV-1 neutralization observed in some subjects is mediated by antibodies targeting several conserved regions on the HIV-1 envelope glycoprotein.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1)-specific immune responses over the course of rapidly progressive infection are not well defined. Detailed longitudinal analyses of neutralizing antibodies, lymphocyte proliferation, in vivo-activated and memory cytotoxic T-lymphocyte (CTL) responses, and viral sequence variation were performed on a patient who presented with acute HIV-1 infection, developed an AIDS-defining illness 13 months later, and died 45 months after presentation. Neutralizing-antibody responses remained weak throughout, and no HIV-1-specific lymphocyte proliferative responses were seen even early in the disease course. Strong in vivo-activated CTL directed against Env and Pol epitopes were present at the time of the initial drop in viremia but were quickly lost. Memory CTL against Env and Pol epitopes were detected throughout the course of infection; however, these CTL were not activated in vivo. Despite an initially narrow CTL response, new epitopes were not targeted as the disease progressed. Viral sequencing showed the emergence of variants within the two targeted CTL epitopes; however, viral variants within the immunodominant Env epitope were well recognized by CTL, and there was no evidence of viral escape from immune system detection within this epitope. These data demonstrate a narrowly directed, static CTL response in a patient with rapidly progressive disease. We also show that disease progression can occur in the presence of persistent memory CTL recognition of autologous epitopes and in the absence of detectable escape from CTL responses, consistent with an in vivo defect in activation of CTL.  相似文献   

6.
Using synthetic peptides, we characterized the B-lymphocyte (antibody) and T-lymphocyte (proliferation) responses to an immunodominant epitope of human immunodeficiency virus type 1 (HIV-1) located near the amino-terminal end of the transmembrane glycoprotein (env amino acids 598 to 609). Both immunoglobulin M (IgM) and IgG antibodies against this epitope appeared early after primary infection with HIV-1. In an animal model, the IgG response to a synthetic peptide derived from this sequence was T-helper-cell dependent, whereas the IgM response was T-cell independent. In addition, antibody generated by immunization with this peptide had HIV-1-neutralizing activity. Greater than 99% (201 of 203) of patients infected with HIV-1 generated antibody to this peptide in vivo; however, only 24% (7 of 29) had T cells that proliferated in response to this peptide in vitro. These observations suggest that different HIV-1 gp41 epitopes elicit B-cell and T-cell immune responses.  相似文献   

7.
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) evades CD8(+) T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8(+) T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8(+) T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8(+) T cells, four of which underwent mutation associated with dramatic loss of the original CD8(+) response. However, following the G(357)S escape in the HLA-A11-restricted Gag(349-359) epitope and the decline of wild-type-specific CD8(+) T-cell responses, a novel CD8(+) T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8(+) T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vbeta repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G(357)S escape variant of the Gag(349-359) epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8(+) T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8(+) T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.  相似文献   

9.
A specific response of human serum neutralizing antibodies (nAb) to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120) of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.  相似文献   

10.
研制一种安全有效并能广泛使用的HIV疫苗对于预防和控制HIV的流行具有重要的意义。尽管人类在HIV-1病原学和免疫学方面的认识不断取得新的进步,对于HIV-1而言,普遍认为诱导保护性中和抗体的科学障碍很难逾越。在抗击HIV-1的感染中传统的疫苗策略不能提供保护。然而,近来的研究揭示在小部分HIV-1感染病人的血清中存在的某些抗体能够中和大多数的HIV-1毒株,对这些血清抗体的深入分析有助于人们揭示抗体识别的病毒表位,这些研究表明自然产生的能够中和HIV-1的中和抗体的发现可能引导未来疫苗设计的思路。高分辨率的结构信息将揭示Env 和中和抗体(Nab)结合区原子水平的结构,这些信息能够帮助设计更好的免疫原。  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

12.
T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1. Trial registration: ClinicalTrials.gov NCT00849680, A Study of Safety, Tolerability, and Immunogenicity of the MRKAd5 Gag/Pol/Nef Vaccine in Healthy Adults.  相似文献   

13.
Recognition by CD8(+) T lymphocytes (CTL) of epitopes that are derived from conserved gene products, such as Gag and Pol, is well documented and conceptually supports the development of epitope-based vaccines for use against diverse HIV-1 subtypes. However, many CTL epitopes from highly conserved regions within the HIV-1 genome are highly variable, when assessed by comparison of amino acid sequences. The TCR is somewhat promiscuous with respect to peptide binding, and, as such, CTL can often recognize related epitopes. In these studies, we evaluated CTL recognition of five sets of variant HIV-1 epitopes restricted to HLA-A*0201 and HLA-A*1101 using HLA transgenic mice. We found that numerous different amino acid substitutions can be introduced into epitopes without abrogating their recognition by CTL. Based on our findings, we constructed an algorithm to predict those CTL epitopes capable of inducing responses in the HLA transgenic mice to the greatest numbers of variant epitopes. Similarity of CTL specificity for variant epitopes was demonstrated for humans using PBMC from HIV-1-infected individuals and CTL lines produced in vitro using PBMC from HIV-1-uninfected donors. We believe the ability to predict CTL epitope immunogenicity and recognition patterns of variant epitopes can be useful for designing vaccines against multiple subtypes and circulating recombinant forms of HIV-1.  相似文献   

14.
Although a major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is to elicit broad and potent neutralizing antibodies (NAbs), there are no data that directly demonstrate a role for such NAbs in protection from HIV-1 infection in exposed humans. The setting of mother-to-child transmission provides an opportunity to examine whether NAbs provide protection from HIV-1 infection because infants acquire passive antibodies from their mothers prior to exposure to HIV-1 through breastfeeding. We evaluated the characteristics of HIV-1-specific NAbs in 100 breast-fed infants of HIV-1-positive mothers who were HIV-1 negative at birth and monitored them until age 2. A panel of eight viruses that included variants representative of those in the study region as well as more diverse strains was used to determine the breadth of the infant NAbs. From their mothers, infants acquired broad and potent NAbs that were capable of recognizing heterologous circulating HIV-1 variants of diverse subtypes, but the presence of NAbs of broad HIV-1 specificity was not associated with transmission risk. There was also no correlation between responses to any particular virus tested, which included a range of diverse variants that demonstrated different neutralization profiles, including recognition by specific antibodies with known epitope targets. The eight viruses tested exhibited neutralization profiles to a variety of monoclonal antibodies (2F5, PG9, and VRC01) similar to those of viruses present in pregnant women in the cohort. These results suggest that the breadth and potency of the heterologous antibody response in exposed infants, measured against a virus panel comprised of variants typical of those circulating in the population, does not predict protection.  相似文献   

15.
Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the three-dimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.  相似文献   

16.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

17.
18.
Cytotoxic T lymphocytes (CTL) target multiple epitopes in human immunodeficiency virus (HIV)-infected persons, and are thought to influence the viral set point. The extent to which HLA class I allele expression predicts the epitopes targeted has not been determined, nor have the relative contributions of responses restricted by different class I alleles within a given individual. In this study, we performed a detailed analysis of the CTL response to optimally defined CTL epitopes restricted by HLA class I A and B alleles in individuals who coexpressed HLA A2, A3, and B7. The eight HIV-1-infected subjects studied included two subjects with acute HIV infection, five subjects with chronic HIV infection, and one long-term nonprogressor. Responses were heterogeneous with respect to breadth and magnitude of CTL responses in individuals of the same HLA type. Of the 27 tested epitopes that are presented by A2, A3, and B7, 25 were targeted by at least one person. However, there was wide variation in the number of epitopes targeted, ranging from 2 to 17. The A2-restricted CTL response, which has been most extensively studied in infected persons, was found to be narrowly directed in most individuals, and in no cases was it the dominant contributor to the total HIV-1-specific CTL response. These results indicate that HLA type alone does not predict CTL responses and that numerous potential epitopes may not be targeted by CTL in a given individual. These data also provide a rationale for boosting both the breadth and the magnitude of HIV-1-specific CTL responses by immunotherapy in persons with chronic HIV-1 infection.  相似文献   

19.
FALVAC-1, a vaccine against Plasmodium falciparum was developed by joining 21 epitopes from P. falciparum vaccine antigens and an universal T helper epitope from tetanus toxoid. Since adjuvants influence different aspects of immune responses, in this study we investigated the effect of four adjuvants aluminum hydroxide (alum), nonionic copolymer adjuvant P1005 (water-in-oil emulsion), CpG oligodeoxynucleotides (ODN), and QS-21 in eliciting immune responses in outbred mice. QS-21 and copolymer adjuvants were the best formulations in inducing higher and long-lasting antibody titers to the whole vaccine compared to alum and CpG. QS-21 was the only adjuvant to elicit predominantly IgG2a response and antibodies reactive with all epitopes incorporated in the vaccine construct. Vaccine elicited antibodies recognized sporozoites and asexual blood-stage parasites. FALVAC-1 immunized mice induced lymphoproliferative and IFN-gamma response to the vaccine. QS-21 and CpG adjuvants were able to elicit T proliferative responses to 20 of the 22 epitopes in the vaccine. In conclusion, this study demonstrated that with suitable adjuvant such as QS-21, it is possible to elicit immune responses to most of the epitopes included in the FALVAC-1 vaccine.  相似文献   

20.
The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号