首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Type I IFNs (IFN-I) are normally produced during antiviral responses, yet high levels of chronic IFN-I expression correlate with autoimmune disease. A variety of viral sensors generate IFN-I in their response, but other than TLRs, it is not fully known which pathways are directly involved in the development of spontaneous immune pathologies. To further explore the link between IFN-I induced by viral pathways and autoimmunity, we generated a new transgenic mouse line containing multiple copies of Ifih1, a gene encoding the cytoplasmic dsRNA sensor MDA5 with proven linkage to diabetes and lupus. We show that MDA5 overexpression led to a chronic IFN-I state characterized by resistance to a lethal viral infection through rapid clearance of virus in the absence of a CD8(+) or Ab response. Spontaneous MDA5 activation was not sufficient to initiate autoimmune or inflammatory pathology by itself, even though every immune cell population had signs of IFN activation. When combined with the lupus-susceptible background of the FcγR2B deficiency, MDA5 overexpression did accelerate the production of switched autoantibodies, the incidence of glomerulonephritis, and early lethality. Thus, MDA5 transgenic mice provide evidence that chronic elevated levels of IFN-I are not sufficient to initiate autoimmunity or inflammation although they might exacerbate an ongoing autoimmune pathology.  相似文献   

2.
The classical interferon (IFN)-dependent antiviral response to viral infection involves the regulation of IFN-stimulated genes (ISGs), one being the gene encoding cellular endoribonuclease RNase L, which arrests protein synthesis and induces apoptosis by nonspecifically cleaving rRNA. Recently, the herpes simplex virus type 1 (HSV-1) protein ICP0 has been shown to block the induction of ISGs by subverting the IFN pathway upstream of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. We report that ICP0 also prevents rRNA degradation at late stages of HSV-1 infection, independent of its E3 ubiquitin ligase activity, and that the resultant rRNA degradation is independent of the classical RNase L antiviral pathway. Moreover, the degradation is independent of the viral RNase vhs and is independent of IFN response factor 3. These studies indicate the existence of another, previously unidentified, RNase that is part of the host antiviral response to viral infection.  相似文献   

3.
The induction of type I IFN is the most immediate host response to viral infections. Type I IFN has a direct antiviral activity mediated by antiviral enzymes, but it also modulates the function of cells of the adaptive immune system. Many viruses can suppress type I IFN production, and in retroviral infections, the initial type I IFN is weak. Thus, one strategy of immunotherapy in viral infection is the exogenous induction of type I IFN during acute viral infection by TLR ligands. Along these lines, the TLR3/MDA5 ligand polyinosinic-polycytidylic acid [poly(I:C)] has already been used to treat viral infections. However, the immunological mechanisms underlying this successful therapy have not been defined until now. In this study, the Friend retrovirus (FV) mouse model was used to investigate the mode of action of poly(I:C) in antiretroviral immunotherapy. Postexposure, poly(I:C) treatment of FV-infected mice resulted in a significant reduction in viral loads and protection from virus-induced leukemia. This effect was IFN dependent because type I IFN receptor-deficient mice could not be protected by poly(I:C). The poly(I:C)-induced IFN response resulted in the expression of antiviral enzymes, which suppressed FV replication. Also, the virus-specific T cell response was augmented. Interestingly, it did not enhance the number of virus-specific CD4(+) and CD8(+) T cells, but rather the functional properties of these cells, such as cytokine production and cytotoxic activity. The results demonstrate a direct antiviral and immunomodulatory effect of poly(I:C) and, therefore, suggests its potential for clinical treatment of retroviral infections.  相似文献   

4.
Interferon, Mx, and viral countermeasures   总被引:3,自引:0,他引:3  
The interferon system provides a powerful and universal intracellular defense mechanism against viruses. Knockout mice defective in IFN signaling quickly succumb to all kinds of viral infections. Likewise, humans with genetic defects in interferon signaling die of viral disease at an early age. Among the known interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins belong to the dynamin superfamily of large GTPases and have direct antiviral activity. They inhibit a wide range of viruses by blocking an early stage of the viral replication cycle. Likewise, the protein kinase R (PKR), and the 2–5 OAS/RNaseL system represent major antiviral pathways and have been extensively studied. Viruses, in turn, have evolved multiple strategies to escape the IFN system. They try to go undetected, suppress IFN synthesis, bind and neutralize secreted IFN molecules, block IFN signaling, or inhibit the action of IFN-induced antiviral proteins. Here, we summarize recent findings about the astonishing interplay of viruses with the IFN response pathway.  相似文献   

5.
6.
RNA interference (RNAi) elicited by long double‐stranded (ds) or base‐paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence‐specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN‐responsive cells with type I IFN. Notably, transfection with long dsRNA specifically vaccinates IFN‐deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system.  相似文献   

7.
Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-α/β) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-α/β production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.  相似文献   

8.
RLR[retinoic acid-inducible gene Ⅰ(RIG-Ⅰ)-like Receptors]是一类表达在胞浆中的模式识别受体, 在识别细胞质中经病毒复制产生的病毒RNA后, 启动一系列信号级联反应, 以诱导机体Ⅰ型干扰素及干扰素诱导的抗病毒基因的表达, 最后达到清除机体病毒感染的目的。由于在病毒感染时机体干扰素反应必须迅速启动, 当病毒清除后干扰素反应又需要立即恢复到正常本底水平, 因此RLR激活的信号转导途径受到了严格的调控, 其中就包括由E3泛素连接酶参与的泛素化修饰调控和由去泛素化酶参与的去泛素化修饰调控。自2003年成功鉴定出鱼类干扰素基因以来, 鱼类也被发现具有保守的RLR信号转导途径诱导干扰素抗病毒免疫反应, 该信号途径同样受到泛素化修饰的调控。文章总结了近年来泛素化修饰在哺乳类和鱼类RLR介导的抗病毒免疫应答通路中的调节机制。  相似文献   

9.
10.
Type I interferons (IFNs) are induced during most viral infections and are considered to be the primary and universal means of innate viral control. However, several other innate mechanisms, including autophagy, have recently been shown to play an important role in antiviral defense. In our recent study, we utilized a herpes simplex virus 1 (HSV-1) infection model to investigate the relationship between cell type and innate antiviral immune mechanisms. Our study demonstrates that dorsal root ganglion (DRG) neurons undergo an innate antiviral response to HSV-1 that differs from the antiviral program induced in mitotic cells in three distinct ways. First, DRG neurons produce less type I IFN and undergo a less effective IFN antiviral program vs. mitotic cells in response to HSV-1 infection. Second, the type I IFN program initiated in DRG neurons induces less cell death than in mitotic cells. Third, in the absence of a robust type I IFN response, DRG neurons, but not mitotic cells, repy on autophagy in HSV-1 defense. Our findings reveal a cell type-specific requirement for autophagy in defense against HSV-1, and offer insight into the cell-appropriate antiviral defense mechanism employed by neurons.  相似文献   

11.
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.  相似文献   

12.
Interferon (IFN) is one of the molecules released by virus-infected cells, resulting in the establishment of an antiviral state within infected and neighboring cells. IFN-induced antiviral response may be subject to modulation by the cellular signaling environment of host cells which impact the effectiveness of viral replication. Here, we show that cells with an activated Ras/Raf/MEK signaling cascade allow propagation of viruses in the presence of IFN. Ras-transformed (RasV12) and vector control NIH 3T3 cells were infected with vesicular stomatitis virus (VSV) or an IFN-sensitive vaccinia virus (delE3L) in the presence of alpha interferon. While IFN protected vector control cells from infection by both viruses, RasV12 cells were susceptible to viral infection regardless of the presence of IFN. IFN sensitivity was restored in RasV12 cells upon RNA interference (RNAi) knockdown of Ras. We further investigated which elements downstream of Ras are responsible for counteracting IFN-induced antiviral responses. A Ras effector domain mutant that can only stimulate the Raf kinase family of effectors was able to suppress the IFN response and allow VSV replication. IFN-induced antiviral mechanisms were also restored in RasV12 cells by treatment with a MEK inhibitor (U0126 or PD98059). Moreover, by using RNAi to MEK1 and MEK2, we determined that MEK2, rather than MEK1, is responsible for suppression of the IFN response. In conclusion, our results suggest that activation of the Ras/Raf/MEK pathway downregulates IFN-induced antiviral response.  相似文献   

13.
Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms.  相似文献   

14.
Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness.  相似文献   

15.
A new role of the Paramyxovirus accessory proteins has been uncovered. The P gene of the subfamily Paramyxovirinae encodes accessory proteins including the V and/or C protein by means of pseudotemplated nucleotide addition (RNA editing) or by overlapping open reading frame. The Respirovirus (Sendai virus and human parainfluenza virus (hPIV)3) and Rubulavirus (simian virus (SV)5, SV41, mumps virus and hPIV2) circumvent the interferon (IFN) response by inhibiting IFN signaling. The responsible genes were mapped to the C gene for SeV and the V gene for rubulaviruses. On the other hand, wild type measles viruses isolated from clinical specimens suppress production of IFN, although responsible viral factors remain to be identified. Both human and bovine respiratory syncytial viruses (RSVs) counteract the antiviral effect of IFN with inhibiting neither IFN signaling nor IFN production. Bovine RSV NS1 and NS2 proteins cooperatively antagonize the antiviral effect of IFN. Studies on the molecular mechanism by which viruses circumvent the host IFN response will not only illustrate co-evolution of virus strategies of immune evasion but also provide basic information useful for engineering novel antiviral drugs as well as recombinant live vaccine.  相似文献   

16.
17.
Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) function as cytoplasmic sensors for viral RNA to initiate antiviral responses including type I interferon (IFN) production. It has been unclear how RIG-I encounters and senses viral RNA. To address this issue, we examined intracellular localization of RIG-I in response to viral infection using newly generated anti-RIG-I antibody. Immunohistochemical analysis revealed that RLRs localized in virus-induced granules containing stress granule (SG) markers together with viral RNA and antiviral proteins. Because of similarity in morphology and components, we termed these aggregates antiviral stress granules (avSGs). Influenza A virus (IAV) deficient in non-structural protein 1 (NS1) efficiently generated avSGs as well as IFN, however IAV encoding NS1 produced little. Inhibition of avSGs formation by removal of either the SG component or double-stranded RNA (dsRNA)-dependent protein kinase (PKR) resulted in diminished IFN production and concomitant enhancement of viral replication. Furthermore, we observed that transfection of dsRNA resulted in IFN production in an avSGs-dependent manner. These results strongly suggest that the avSG is the locus for non-self RNA sensing and the orchestration of multiple proteins is critical in the triggering of antiviral responses.  相似文献   

18.
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG‐I‐like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon‐stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG‐I, MDA5 and, the least‐studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus‐derived double‐stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi‐dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA‐mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2‐mediated antagonism of dsRNA‐mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.  相似文献   

19.
Type I interferons (IFNs) signal through specific receptors to mediate expression of genes, which together confer a cellular antiviral state. Overexpression of the zinc finger antiviral protein (ZAP) imparts a cellular antiviral state against Retroviridae, Togaviridae, and Filoviridae virus family members. Since ZAP expression is induced by IFN, we utilized Sindbis virus (SINV) to investigate the role of other IFN-induced factors in ZAP's inhibitory potential. Overexpressed ZAP did not inhibit virion production or SINV-induced cell death in BHK cells deficient in IFN production (and thus IFN signaling), suggesting a role for an IFN-induced factor in ZAP's activity. IFN pretreatment in the presence of ZAP resulted in greater inhibition than IFN alone. Using mouse embryo fibroblast (MEF) cells deficient in Stat1, we showed that signaling through the IFN receptor is necessary for IFN′s enhancement of ZAP activity. Unlike in BHK cells, however, overexpressed ZAP exhibited antiviral activity in the absence of IFN. In wild-type MEFs with an intact Stat1 gene, IFN pretreatment synergized with ZAP to generate a potent antiviral response. Despite failing to inhibit SINV virion production and virus-induced cell death in BHK cells, ZAP inhibited translation of the incoming viral RNA. IFN pretreatment synergized with ZAP to further block protein expression from the incoming viral genome. We further show that silencing of IFN-induced ZAP reduces IFN efficacy. Our findings demonstrate that ZAP can synergize with another IFN-induced factor(s) for maximal antiviral activity and that ZAP's intrinsic antiviral activity on virion production and cell survival can have cell-type-specific outcomes.  相似文献   

20.
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号