首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《Process Biochemistry》2010,45(8):1299-1306
Neutralized hydrolysate and pretreated rice straw obtained from a 2% (w/v) sulfuric acid pretreatment were mixed at 10% (w/v) and subjected to simultaneous saccharification and co-fermentation (SSCF), with cellulase, β-glucosidase, and Candida tropicalis cells at 15 FPU/g-ds, 15 IU/g-ds and 1 × 109 cells/ml, respectively. A 36-h SSCF with adapted cells resulted in YP/S and ethanol volumetric productivity of 0.36 g/g and 0.57 g/l/h, respectively. In addition to ethanol, insignificant amounts of glycerol and xylitol were also produced. Adapted C. tropicalis cells produced nearly 1.6 times more ethanol than non-adapted cells. Ethanol yield (Yp/s), ethanol volumetric productivity and a xylitol concentration of 0.48 g/g, 0.33 g/l/h and 0.89 g/l, respectively, were produced from fermentation of remaining hydrolysate with adapted C. tropicalis cells. The 0.20 g/g ethanol yield and 77% production efficiency from SSCF of pretreated rice straw indicate scale-up potential for the process. This study demonstrated that C. tropicalis produced ethanol and xylitol from a mixed-sugar stream, although cell adaptation affected ethanol and xylitol yields. Scanning electron microscopy indicated agglomeration of cellulose microfibrils and globular deposition of lignin in acid-pretreated rice straw.  相似文献   

2.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

3.
Statistical experimental design was used to optimize the conditions of simultaneous saccharification and fermentation (SSF), viz. temperature, pH and time of fermentation of ethanol from sago starch with co-immobilized amyloglucosidase (AMG) and Zymomonas mobilis MTCC 92 by submerged fermentation. Maximum ethanol concentration of 55.3 g/l was obtained using a starch concentration of 150 g/l. The optimum conditions were found to be a temperature of 32.4 °C, pH of 4.93 and time of fermentation of 17.24 h. Thus, by using SSF process with co-immobilized AMG and Z. mobilis cells MTCC 92, the central composite design (CCD) was found to be the most favourable strategy investigated with respect to ethanol production and enzyme recovery.  相似文献   

4.
Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.  相似文献   

5.
During pyruvate production, ethanol is produced as a by-product, which both decreases the amount of pyruvate and makes the recovery of pyruvate more difficult. Pyruvate decarboxylase (PDC, EC 4.1.1.1), which degrades pyruvate to acetaldehyde and ultimately to ethanol, is a key enzyme in the pyruvate metabolism of yeast. Therefore, to order to increase the yield of pyruvate in Torulopsis glabrata, targeted PDC-disrupted strains were metabolically engineered. First, T. glabrata ura3 strains that were suitable for genetic transformation were isolated and identified through ethyl methansulfonate mutagenesis, 5-fluoroortic acid media selection, and Sacchramyces cerevisiae URA3 complement. Next, the PDC gene in T. glabrata was specifically disrupted through homologous recombinant with the S. cerevisiae URA3 gene as the selective marker. The PDC activity of the disruptants was about 33% that of the parent strain. Targeted PDC gene disruption in T. glabrata was also confirmed by PCR amplification and sequencing of the PDC gene and its mutants, PDC activity staining, and PDC Western blot. The disruptants displayed higher pyruvate accumulation and less ethanol production. Under basal fermentation conditions (see Section 2), the disruptants accumulated about 20 g/L of pyruvate with 4.6 g/L of ethanol, whereas the parental strain (T. glabrata IFO005) only accumulated 7–8 g/L of pyruvate with 7.4 g/L of ethanol. Under favorable conditions in jar fermentation, the disruptants accumulated 82.2 g/L of pyruvate in 52 h.  相似文献   

6.
When Saccharomyces cerevisiae was cultivated under ~200 g glucose/l condition, the time point at which glucose was completely utilized coincided with the moment at which the slope of a redox potential profile changed from negative or zero to positive. Based on this feature, a redox potential-driven glucose-feeding fermentation operation was developed, and resulted in a self-cycling period of 14.25 ± 0.4 h. The corresponding ethanol concentration was maintained at 88.4 ± 1.0 g/l with complete glucose conversion, and the cell viabilities increased from 80% in the transition period to 97.2 ± 1.1%, implying the occurrence of yeast acclimatization. In contrast, a pre-determined 36-h manually adjusted period was chosen to oscillate yeast cells under ~250 g glucose/l conditions, which resulted in 106.76 ± 0.7 g ethanol/l and 15.19 ± 1.3 g glucose/l remaining at the end of each cycle. Compared to the equivalent batch and continuous ethanol fermentation processes, the annual ethanol productivity of the reported fermentation operation is 2.4% and 13.2% greater, respectively in ~200 g feeding glucose/l conditions.  相似文献   

7.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

8.
Flocculating yeast strains with good fermentation ability are desirable for brewing industry as well as for fuel ethanol production, however, the genetic diversity of the flocculating genes from natural yeast strains is largely unexplored. In this study, FLO1, FLO5, FLO9, FLO10 and FLO11 PCR products were obtained from 16 yeast strains from various sources, and the PCR product amplified from FLO1 of the self-flocculating yeast strain SPSC01 was used for the construction of expression cassette flanked by homologous fragments of the endonuclease gene HO for chromosome integration. A genetically engineered flocculating yeast BHL01 with good fermentation performance was obtained by transforming an industrial strain Saccharomyces cerevisiae 4126 with the expression cassette. The fermentation performances of SPSC01 and BHL01 in flask fermentation were compared using 208 g/L glucose. BHL01 completed the fermentation 8 h earlier than SPSC01, while no significant difference between BHL01 and S. cerevisiae 4126 was observed. In very high gravity repeated batch ethanol fermentation using 255 g/L glucose, BHL01 maintained stable flocculation for at least over 24 batches, while SPSC01 displayed severe deflocculation under the same conditions. The natural reservoir of flocculating genes from yeast strains may represent an unexplored gene source for the construction of new flocculating yeast strains for improved ethanol production.  相似文献   

9.
This study focused on the effects of three additives given together with a hay/concentrate-based diet on nutrient digestibility, rumen fermentation, and methane emission from sheep. The basal diet consisted of 1.29 kg mixed hay and 0.43 kg concentrate mixture based on dry matter (DM). Treatments consisted of control (no additive), flavomycin40 (250 mg/d), ropadiar from an oregano extract (250 mg/d), and saponin in the form of a yucca schidigera extract (170 mg/d). Results indicated that intake and digestibility were unaffected by treatments (P>0.05). The NH3-N concentration of rumen liquor was lower (P<0.05) for additive treatments versus the control treatment. Higher concentrations of volatile fatty acid (VFA) were observed in the saponin (75.8 mmol/L) and ropadiar (73.1 mmol/L) treatments. The proportion of individual fatty acid of rumen liquor was unchanged, whereas lower ratio of acetate to propionate in the saponin treatment was observed (P<0.05). The average methane production expressed on digested organic matter (OM) and neutral detergent fiber (aNDFom) basis were decreased by approximately 3.3 and 12.0 g/kg, respectively in saponin, and 4.2 and 11.9 g/kg in ropadiar treatment compared to the control. Methane production was positively correlated with the concentrations of NH3-N, and negatively correlated with total VFA and the proportion of propionate of rumen liquor (P<0.05). The study found that saponin and ropadiar could have the potential to reduce rumen methanogenesis in sheep.  相似文献   

10.
To alleviate the problems of low substrate loading, nonisothermal, end-product inhibition of ethanol during the simultaneous saccharification and fermentation, a nonisothermal simultaneous solid state saccharification, fermentation, and separation (NSSSFS) process was investigated; one novel pilot scale nonisothermal simultaneous solid state enzymatic saccharification and fermentation coupled with CO2 gas stripping loop system was invented and tested. The optimal pretreatment condition of steam-explosion was 1.5 MPa for 5 min in industrial level. In the NSSSFS, enzymatic saccharification and fermentation proceeded at around 50 °C and 37 °C, respectively, and were coupled together by the hydrolyzate loop; glucose from enzymatic saccharification was timely consumed by yeast, and the formed ethanol was separated online by CO2 gas stripping coupled with adsorption of activated carbon; the solids substrate loading reached 25%; ethanol yields from 18.96% to 30.29% were obtained in fermentation depending on the materials tested. Based on the pilot level of 300 L fermenter, a novel industrial-level of 110 m3 solid state enzymatic saccharification, fermentation and ethanol separation plant had been successfully established and operated. The NSSSFS was a novel and feasible engineering solution to the inherent problems of simultaneous saccharification and fermentation, which would be used in large scale and in industrial production of ethanol.  相似文献   

11.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

12.
《Process Biochemistry》2007,42(8):1191-1199
Biosurfactants, in general has the potential to aid in the recovery of subsurface organic contaminants (environmental remediation) or crude oils (oil recovery). However, high production and purification costs limit its use in these high-volume applications. In the present study, the efficiency of two Bacillus subtilis strains viz., DM-03 and DM-04 for the production of biosurfactants in two fermentation systems viz., solid state fermentation (SSF) and submerged fermentation (SmF) was compared. Both the B. subtilis strains produced appreciable and equal amount of crude lipopeptide biosurfactants (B. subtilis DM-03: 80.0 ± 9 mg/gds in SmF and 67.0 ± 6 mg/gds in SSF; B. subtilis DM-04: 23.0 ± 5.0 mg/gds in SmF and 20.0 ± 2.5 mg/gds in SSF) in the two different fermentation systems using potato peels as cheap carbon source. These thermostable lipopeptide biosurfactants produced by B. subtilis strains either in SSF or in SmF, exhibited strong emulsifying property and could release appreciable amount of oil from saturated sand pack column. Further, it was shown by biochemical analysis, RP-HPLC profile and IR spectra that there is no qualitative and qualitative differences in the composition of crude biosurfactants produced either in SmF or in SSF system.  相似文献   

13.
A model of ethanol fermentation by Zymomonas mobilis ATCC 10988 on the medium containing glucose and fructose is proposed. This model was developed on the basis of metabolic analysis and many experimental findings. When glucose was used as the substrate, the dependence of the carbon fraction (α) assimilating to biomass on the specific growth rate (μ) could be well correlated to α = 0.25μ + 0.012. This correlation resulted in a novel equation for specific glucose uptake rate, which could describe the Z. mobilis fermentation in both batch and continuous modes. When fructose and glucose were both presented in the liquid medium, the model could predict the uptake of glucose and fructose as well as the formation of biomass, ethanol and sorbitol by Z. mobilis. All parameters used in the model were independently evaluated on the basis of various experimental findings. Good agreement was found between the model predictions and data of Z. mobilis fermentation on media containing both glucose and fructose. The proposed model could also describe the behavior of ethanol fermentation on sucrose medium supplemented with immobilized invertase.  相似文献   

14.
《Process Biochemistry》2007,42(6):1010-1020
Acid hydrolysis of distilled grape marc, an useless agricultural residue from wineries, was carried out using dilute sulfuric acid (1–5%) at several reaction times and 130 °C, in order to obtain monomeric sugars which after supplementation with corn steep liquor (10 g/L) and yeast extract (10 g/L) were used to carry out the fermentation into lactic acid by Lactobacillus pentosus without detoxification stage. Xylose was the main sugar generated followed by glucose and arabinose. Possible inhibitor compounds such as acetic acid liberated from acetyl groups, and furfural and hydroxymethylfurfural generated by sugars dehydration, were produced as degradation byproducts. The hydrolysis stage was optimized by using an incomplete factorial design where the independent variables were the percentage of catalyzer, the reaction time and the temperature. The optima conditions in terms of xylose concentration were 3.3% H2SO4, 125 min and 130 °C, but due to the high furfural concentration, two other conditions using lower reaction times (30 and 77.5 min) were also selected to assay the fermentation. Although any condition was feasible to fully utilize the relatively broad spectra of sugars released by the acid hydrolysis, under the shorter reaction time the best results were achieved (QP = 0.476 g/L h; YP/S = 0.71 g/g) which represents a theoretical yield of 97%. Furthermore, L. pentosus produced 4.8 mg/L of intracellular biosurfactants, measured as biosurfactin, representing a yield of 0.60 mg of intracellular biosurfactant per g of sugars consumed.  相似文献   

15.
Failures in stability and COD removal performance often occurred in full-scale anaerobic reactors treating the evaporator condensate from a sulphite pulp mill due to substrate inhibition and occasional contaminations with red liquor (wood cooking liquor). With this work, the beneficial effect provided by the continuous addition of an external carbon source (sugarcane molasses) on the overall performance and stability of the biological process was evaluated. With a moderate addition of molasses the inhibition was mitigated which led to an increase of the COD removal rate from 52% to 77% and a methane production increase from 460 to 1650 ml d?1 at an organic loading rate of 2.61 g COD l?1 d?1. A similar conclusion can be drawn for the case when contamination with red liquor occurs. These results suggest that sugarcane molasses addition may be regarded as a low-cost operational strategy for the anaerobic treatment of sulphite evaporator condensate.  相似文献   

16.
A two-stage hybrid fractionation process was investigated to produce cellulosic ethanol and furfural from corn stover. In the first stage, zinc chloride (ZnCl2) was used to selectively solubilize hemicellulose. During the second stage, the remaining treated solids were converted into ethanol using commercial cellulase and Saccharomyces cerevisiae or recombinant Escherichia coli, KO11. This hybrid fractionation process recovered 93.8% of glucan, 89.7% of xylan, 71.1% of arabinan, and 74.9% of lignin under optimal reaction conditions (1st stage: 5% acidified ZnCl2, 7.5 ml/min, 150 °C (10 min) and 170 °C (10 min); 2nd stage: simultaneous saccharification and fermentation (SSF) using S. cerevisiae). The furfural yield from the hemicellulose hydrolysates was 58%. The SSF of the treated solids resulted in 69–98% of the theoretical maximum ethanol yields based on the glucan content in the treated solids. After fermentation, the solid residues contained primarily lignin. Based on the total lignin in untreated corn stover, the lignin recovery yield was 74.9%.  相似文献   

17.
The growth kinetics of the yeast Saccharomyces cerevisiae and the production rate of ethanol have been studied in batch fermentation under anaerobic conditions in a 20-L fermentor. Two substrates were used in fermentation trials: a synthetic mixture of three fermentable sugars, D-glucose, D-mannose, and D-galactose, and a low-yield liquor originating from a bisulfite cooking process. The Monod model adequately described the system in relation to the specific growth rate mu(x) and the specific product formation rate mu(P). Different fermentation parameters (growth rate, substrate utilization, and product formation) were determined for the synthetic mixture and the bisulfite liquor. It was observed that the specific growth rate is much lower in spent sulfite liquor than in a synthetic medium. However, the specific product formation rate remains the same in both media.  相似文献   

18.
An in vitro model was used to study the fermentation characteristics of carbohydrate fractions of hulless barley (hB), in comparison to hulled barley (HB), hulled oat and oat groats (OG) in the pig intestine. For this purpose, 6 hulless barley cultivars (hB), varying in β-glucan content (36–99 g/kg DM), were compared to 3 HB cultivars, 2 oat groat samples (OG), 3 oat varieties and a reference sample of wheat. The residue of a pepsin–pancreatin hydrolysis was incubated in a buffered mineral solution inoculated with pig faeces. Gas production, proportional to the amount of fermented carbohydrates, was measured for 48 h and kinetics modelled. The fermented solution was subsequently analyzed for microbial production of short-chain fatty acids (SCFA) and ammonia. In vitro dry matter degradability varied according to ingredient (P<0.001). Higher values were observed for OG, ranging from 0.88 to 0.99 as compared to oat, hB and HB, for which degradability ranged from 0.63 to 0.73, 0.68 to 0.80 and 0.69 to 0.71, respectively. A “cereal type” effect (P<0.05) was observed on fermentation kinetics parameters. Total gas production was higher (P<0.05) with hB (224 ml/g DM incubated) than with HB and oat (188 and 55 ml/g DM incubated, respectively). No difference was observed between hB cultivars (P>0.05) for total gas production but differences (P<0.001) were found for lag time and the fractional rate of degradation. Hulless barley cultivar CDC Fibar (waxy starch) and CDC McGwire (normal starch) started to ferment sooner (lag time of 0.7 and 0.9 h, respectively) than SH99250 (high amylose starch; 1.7 h). The fractional rate of degradation was similar in both hB and OG (0.15/h on average), which was higher than that of HB (0.12/h). The production of SCFA was also higher (P<0.05) with hB (6.1 mmol/g DM incubated, on average) than with HB and oat (4.9 and 2.9 mmol/g DM incubated, respectively). Similar trends were found for SCFA production expressed per g fermented carbohydrates, with higher butyrate and lower acetate ratio. In contrast, oat fermentation generated higher (P<0.05) ammonia concentration (1.4 mmol/g DM incubated, on average) than hB (1.0 mmol/g DM incubated). In summary, hulless barleys, irrespective of cultivar type had higher in vitro fermentability and produced more SCFA and less ammonia than hulled barley and oat. Thus, hulless barleys have a better potential to be used in pig nutrition to manipulate the fermentation activity in the intestine of pigs.  相似文献   

19.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

20.
In this work, a laccase producer, Ganoderma lucidum, was separated and identified according to its morphological characteristics and phylogenetic data. A 4000 U/l and 8500 U/l of laccase activity was obtained in 500 ml flask by submerged culture and biomembrane-surface liquid culture (BSLC), respectively. Furthermore, the novel biomembrane-surface liquid co-culture (BSLCc) was developed by adding Saccharomyces cerevisiae to reactor in order to shorten the fermentation period and improve laccase production. Laccase activity obtained by BSLCc, 23 000 U/l, is 5.8 and 2.7 times of that obtained by submerged culture and BSLC, respectively. In addition, laccase production by BSLCc was successfully scaled-up to 100 l reactor, and 38 000 U/l of laccase activity was obtained on day 8. The mechanism of overproducing laccase by BSLCc was investigated by metabolism pathway analysis of glucose. The results show glucose limitation in fermentation broth induces the secretion of laccase. The addition of S. cerevisiae, on one hand, leads to an earlier occurrence of glucose limitation state, and thus shortens the fermentation time; on the other hand, it also results in the appearance of a series of metabolites of the yeast including organic acids, ethanol, glycerol and so forth in fermentation broth, and both polyacrylamide gel electrophoresis analysis and enzyme activity detection of laccase show that these metabolites contribute to the improvement of laccase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号