首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coastal shrub Limoniastrum monopetalum is capable of growth in soil containing extremely high concentrations of heavy metals. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0–130 mmol l−1) on growth and photosynthetic performance, by measuring relative growth rate, total leaf area, plant height, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, sulphur, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. The study species demonstrated hypertolerance to Zn stress, since survival was recorded with leaf concentrations of up to 1700 mg Zn kg−1 dry mass when treated with 130 mmol Zn l−1. L. monopetalum exhibited little overall effects on photosynthetic function at Zn levels of up to 90 mmol l−1. At greater external Zn concentration, plant growth was negatively affected, due in all probability to the recorded decline in net photosynthetic rate, which may be linked to the adverse effect of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1400 mg Zn kg−1 dry mass thus indicating that this species could play an important role in the phytoremediation of Zn-polluted areas.  相似文献   

2.
Mosses are keystone species in peatlands and are an important part of the vegetation of the pre-mined peatlands. Therefore, mosses should be included in rehabilitation projects following oil sands exploitation in north-western Canada. However, mosses growing in post-mined landscapes must tolerate elevated salinity levels found in oil sands process water (OSPW). Knowledge of salinity tolerance and thresholds for fen mosses is needed to place these mosses in the newly created landscapes. We tested the effects of NaCl and Na2SO4 on four fen moss species growing in Petri dishes in growth chambers. We simulated two scenarios: (1) four immersion times (¼, 1, 3 and 7 days) in NaCl (0%, 20%, 60% or 100% of the concentration found in OSPW) mimicking periodic flooding and (2) a permanent saline influence (NaCl or Na2SO4 alone or in combination at 0%, 30%, 50% or 70% of the concentrations found in OSPW) mimicking situations of high water tables with different contamination levels. The effects on moss growth were estimated by counting new innovations of Bryum pseudotriquetrum, Campylium stellatum, Sphagnum warnstorfii and Tomenthypnum nitens. All tested mosses tolerated saline levels typically found in post-mined landscapes (up to 500 mg L−1 of NaCl and 400 mg L−1 of Na2SO4) for up to 100 days of exposure. Short periods of immersion (up to 7 days independently of salt concentrations) induced the production of innovation in non-Sphagnum species, but S. warnstorfii was more rapidly impacted at higher salt concentrations. Short pulses of salt (from 6 h to 7 days) did not influence the formation of new innovations for C. stellatum and T. nitens. Salt type (NaCl and/or Na2SO4) had no effect on moss growth. However, a longer exposure (100 days) with saline water, even at low concentrations, diminished the formation of new innovations for B. pseudotriquetrum and T. nitens. C. stellatum was the least affected by salinity and thus we suggest it is the best species to reintroduce in constructed fens.  相似文献   

3.
ObjectivesThe aim of this study was to investigate blood lead level and its relationship to essential elements (zinc, copper, iron, calcium and magnesium) in school-age children from Nanning, China.MethodsA total of 2457 children aged from 6 to 14 years were enrolled in Nanning, China. The levels of lead (Pb), zinc (Zn), copper (Cu), iron (Fe), calcium (Ca) and magnesium (Mg) were determined by an atomic absorption spectrometer.ResultsThe mean blood lead level (BLL) was 57.21 ± 35.00 μg/L. 188 (7.65%) asymptomatic children had toxic lead level higher than 100 μg/L. The school-age boys had similar lead level among different age groups, while the elder girls had less BLL. The blood Zn and Fe were found to be increased in the boys with elevated BLL, but similar trends were not observed in the girls. Positive correlations between Pb and Fe or Mg (r = 0.112, 0.062, respectively, p < 0.01) and a negative correlation between Pb and Ca (r = −0.047, p < 0.05) were further established in the studied children.ConclusionsLead exposure in school-age children was still prevalent in Nanning. The boys and girls differed in blood levels of lead and other metallic elements. Lead exposure may induce metabolic disorder of other metallic elements in body.  相似文献   

4.
ObjectiveOur study aimed to assess the distribution of blood lead level and its relationship to essential elements in preschool children in an urban area of China.Design and methodsA total of 6741 children aged 0- to 6-year-old were recruited. Levels of lead, zinc, copper, iron, calcium, and magnesium in whole blood samples were determined using atomic absorption spectrometry.ResultsThe mean blood lead level (BLL) and the prevalence of BLL  10 μg/dl (5.26 ± 4.08 μg/dl and 6.84%, respectively) increased with age gradually, and there was a gender-difference for blood lead, copper, zinc and iron levels. Compared with the group of children who had BLLs < 5 μg/dl, the groups of 5  BLLs < 10 μg/dl and 10  BLLs < 15 μg/dl showed higher blood zinc, iron and magnesium levels, and a lower blood calcium level. A positive correlation of lead with zinc, iron and magnesium, and a negative correlation of lead with calcium were found in the group of children with BLL < 5 μg/dl.ConclusionAge- and gender-differences were found when assessing the BLL and intoxication prevalence in preschool children. Metabolic disorder of essential elements was found even with a low level of lead exposure.  相似文献   

5.
Lili Nan  Quanen Guo 《农业工程》2018,38(5):339-344
A field experiment was conducted to assess the influences of soil chemical, physical, and biological properties of Alhagi sparsifolia community in Linze, Gaotai, and Guazhou County, Gansu province, China. Results showed that soils sampled were generally infertile with low levels of organic matter, available nitrogen, phosphorus, copper, manganese, and zinc with bacteria dominant microbial communities supporting A. sparsifolia. Available potassium and iron were sufficient in the study sites. With increasing soil layer depth, the contents of organic matter, available nitrogen, phosphorus, potassium, manganese, urease, dehydrogenase, bacteria, and actinomyces in the soil decreased significantly (P < 0.05), whereas the concentrations of moisture, available iron, and zinc in the soil increased significantly (P < 0.05). The contents of organic matter, available nitrogen, phosphorus, potassium, iron, manganese, zinc, copper, urease, dehydrogenase, bacteria, and actinomyces showed strong seasonal variations (P < 0.05). All these variables except dehydrogenase, bacteria, and actinomyces were the highest in summer and the lowest in spring. The comprehensive score of soil qualities was the greatest in Linze, medium in Guazhou, and lowest in Gaotai.  相似文献   

6.
ProjectChronic visceral leishmaniasis (VL) is an increasingly common problem in disease endemic states of India. Identification of prognosis risk factor in patients with VL may lead to preventive actions, toward decreasing its mortality in chronic individuals. Though serum Zinc levels are decreased in patients of VL, limited information is available regarding trace elements status in acute and chronic VL patients. The present study was undertaken to compare serum trace elements concentrations in acute and chronic VL patients.ProcedureAcute (mean age = 28.64 years), chronic (mean age = 23.68 years) VL patients and healthy controls (mean age = 23.05 years) who agreed to provide blood specimens for laboratory investigations participated in this study. Serum zinc (Zn), copper (Cu), iron (Fe), magnesium (Mg) and calcium (Ca) were measured spectrophotometrically using chemistry analyzer.ResultsSerum Zn concentration was comparatively much decreased in chronic VL than to acute ones (p = 0.007) while serum Mg was higher in chronic VL than acute (p = 0.002) ones. There was no statistically significant difference between acute and chronic VL in serum concentrations of Cu, Fe and Ca.ConclusionsSerum Zn levels were much decreased and serum Mg were increased in chronic VL as compared to acute cases. The serum concentrations of Fe and Ca did not show any difference between two groups. The serum Cu was increased in both groups but more in chronic ones. Serum Zn and Mg could be a potential prognosis factor for chronic VL patients. We hypothesize zinc supplementation as a chemo preventive agent for chronic VL cases, particularly in endemic areas.  相似文献   

7.
The study investigates the change in osmolality and haemolymph constituents in marron Cherax cainii and yabbies Cherax destructor associated with moult stages, body weights and their feeding status. A total of 582 haemolymph samples from 5 moult stages (postmoult-AB, intermoult-C, and premoult stages – D0, D1, D2), two body weight classes (2–15 g and 61–75 g) and nutritional status were used for analysis of osmolality, protein, glucose, and ionic concentrations of potassium and chloride following the standard biochemical procedures. The haemolymph protein, glucose, potassium and chloride levels were highest at intermoult and early premoult stages, and lowest at postmoult in both crayfish species. Except protein, no significant differences were seen in analyzed parameters between various weight classes and two species. Haemolymph osmolality, protein and glucose were significantly higher in fed crayfish, whereas no variations in haemolymph potassium and chloride concentrations were observed between the fed and unfed crayfish. Maximum osmolality was recorded at 7–8 h after feeding in both crayfish species. The results showed that the biochemical changes in the haemolymph of marron and yabbies are related to moult stages, body weight and feeding and thus can be used as tools for determining suitable diets.  相似文献   

8.
ObjectiveTo determine the effect of phytic acid, tannic acid and pectin on fasting non-heme iron bioavailability in both the presence and absence of calcium.Research methodsTwenty-eight apparently healthy adult females participated in two iron absorption studies using radioactive iron isotopes (59Fe and 55Fe). One group received 5 mg of iron (as FeSO4) alone (control), together with 10 mg of phytic acid, 100 mg of tannic acid and 250 mg of pectin (study A), on different days. The second group received the same iron doses and compounds as the other group, plus 800 mg of calcium (CaCl2) (study B). The compounds were administered after an overnight fast, and no food or beverages were consumed for the following 3 h. Iron status and circulating radioactivity were measured in venous blood samples.ResultsThe geometric means of iron bioavailability (range ± 1SD) for iron alone, iron with phytic acid, iron with tannic acid, and iron with citrus pectin were 25.0% (11.9–52.0); 18.9% (9.9–35.8); 16.8% (8.7–32.3); and 21.1% (10.2–43.9), respectively (repeated-measures ANOVA, p < 0.02 (Dunnett's post hoc: control vs tannic acid p < 0.05). When 800 mg of calcium was added (study B), iron bioavailability was 16.7% (10.1–27.5); 13.2% (7.1–24.6); 14.8% (8.8–25.1); and 12.6% (5.5–28.8), respectively (repeated-measures ANOVA, NS).ConclusionsTannic acid decreases the fasting bioavailability of non-heme iron, however this effect did not exist in the presence of calcium. No effect was observed by phytic acid or citrus pectin on fasting non-heme iron bioavailability in both the presence and absence of calcium.  相似文献   

9.
Vegetation, testate amoebae, and metal concentrations in water and soil (mostly peat) were studied in two copper-rich treed swamps located north of Sackville, New Brunswick, Canada. One of the sites is partly disturbed, characterized by bare soil nearly devoid of vegetation cover except for isolated patches of the moss species, Pohlia nutans, around seepages and small streams. Copper concentrations in soil and water samples were high but varied among plots. Values in soil samples were as high as 16,000 μg/g in the open area, with 4550 μg/g being the mean. The highest value in groundwater was 1540 μg/l, with 292 μg/l being the mean. Twenty-seven testate amoebae species were identified from soil samples. The most abundant species were Cyclopyxis arcelloides and Centropyxis spp. Principal component analysis and detrended correspondence analysis showed that their abundance was especially high in the open area where copper concentrations were high, while species diversity of testate amoebae was low in the open area. This study suggests potential use of mosses and testate amoebae as bio-indicators and bio-monitoring tools for metals such as copper.  相似文献   

10.
Echinoderms are considered marine osmoconforming invertebrates. However, many are intertidal or live next to estuaries, tolerating salinity changes and showing extracellular gradients to dilute seawater. Three species of echinoids – Lytechinus variegatus, which can occur next to estuarine areas, the rocky intertidal Echinometra lucunter, and the mostly subtidal Arbacia lixula – were submitted to a protocol of stepwise (rate of 2–3 psu/h) dilution, down to 15 psu, or concentration, up to 45 psu, of control seawater (35 psu). Coelomic fluid samples were obtained every hour. The seawater dilution experiment lasted 8 h, while the seawater concentration experiment lasted 6 h. Significant gradients (40–90% above value in 15 psu seawater) for osmolality, sodium, magnesium, and potassium were shown by L. variegatus and E. lucunter. A. lixula showed the smallest gradients, displaying the strongest conforming behavior. The esophagus of the three species was challenged in vitro with 20 and 50% osmotic shocks (hypo- and hyperosmotic). A. lixula, the most “conforming” species, showed the highest capacity to avoid swelling of its tissues upon the ? 50% hyposmotic shock, and was also the species less affected by salinity changes concerning the observation of spines and ambulacral feet movement in the whole-animal experiments. Thus, the most conforming species (A. lixula) displayed the highest capacity to regulate tissue water/volume, and was also the most euryhaline among the three studied species. In addition, tissues from all three species swelled much more than they shrank under osmotic shocks of same magnitude. This distinct trend to gain water, despite the capacity to hold some gradients upon seawater dilution, helps to explain why echinoderms cannot be fully estuarine, or ever enter fresh water.  相似文献   

11.
Members of the Chenopodiaceae are well adapted to both salt and drought stress and can serve as model species to understand the mechanisms of tolerance in plants. We grew Atriplex hortensis (ATHO), A. canescens (ATCA), and A. lentiformis (ATLE) along a NaCL salinity gradient under non-water-limited conditions and in drying soils in greenhouse experiments. The species differed in photosynthetic carbon fixation pathway, capacity for sodium uptake, and habitat preferences. Under non-water-limited conditions, ATLE (C4) maintained high growth rates up to 30 g L−1 NaCl. ATHO (C3) had lower growth than ATLE at high salinities, while ATCA (C4) grew more slowly than either ATLE or ATHO and showed no net growth above 20 g L−1 NaCl. ATHO and ATLE accumulated twice as much sodium in their shoots as ATCA, but all three species had increasing sodium levels at higher salinities. Potassium, magnesium and calcium levels were relatively constant over the salinity gradient. All three species showed marked accumulation of chloride across the salinity gradient, whereas nitrate, phosphorous and sulfate decreased with salinity. The effect of drought was simulated by growing plants in sealed pots with an initial charge of water plus NaCl, and allowing them to grow to the end point at which they no longer were able to extract water from the soil solution. Drought and salinity were not additive stress factors for Atriplex spp. in this experiment. NaCl increased their ability to extract water from the soil solution compared to fresh water controls. ATLE showed increased shoot dry matter production and increased water use efficiency (WUE) as initial salinity levels increased from 0 to 30 g L−1 NaCl, whereas dry matter production and WUE peaked at 5 g L−1 for ATHO and ATCA. Final soil moisture salinities tolerated by species were 85 g L−1, 55 g L−1 and 160 g L−1 NaCl for ATHO, ATCA and ATLE, respectively. C4 photosynthesis and sodium accumulation in shoots were associated with high drought and salt tolerance.  相似文献   

12.
13.
《Small Ruminant Research》2008,79(1-3):169-175
The effect of water restriction on milk yield and composition, feed intake, body weight and blood parameters was evaluated in Comisana sheep reared under intensive condition. The experiment, lasted 40 days, was performed on 26 lactating ewes subdivided into three treatment groups; the control T group received water ad libitum (W-100) and Group 1 (W-80) and Group 2 (W-60) were watered, respectively, with 80 and 60% of the water consumed by the control T group. Water was supplied in the morning once a day while feed twice. Milk quality analysis was performed every 10 days for pH, fat, total protein, lactose and somatic cell content. Serum samples, performed at days 0, 13, 26 and 40, were analyzed for glucose, cholesterol, triglycerides, creatinine, total proteins, albumin, sodium, potassium, calcium and chloride. Compared to W-100, W-60 was significantly different (P < 0.05) for body weight and serum potassium levels and showed an increase (P < 0.01) in serum concentrations of triglycerides, albumin, total proteins and cholesterol (P < 0.05). Total proteins, triglycerides and sodium levels increased (P < 0.05) in W-80. Body weight showed a significant difference (P < 0.05) only in W-60 if compared to W-100. No significant differences were observed in milk yield, milk composition and feed intake across the treatment groups.  相似文献   

14.
Halophyte species demonstrate differing levels of salt tolerance. Understanding interspecific variation to salinity levels is of value from both the scientific perspective, which includes the identification of traits associated with salinity tolerance, as well as from an applied perspective, which includes identifying plant species for specific salinity restoration and remediation projects. This paper investigates the effects of salinity on germination of 12 Australian species of the plant genus Frankenia L. (Frankeniaceae). We use saline solutions that corresponded to the average soil–water salinity concentrations in the arid zones of inland Australia. These solutions consisted of 10 mM calcium chloride, 30 mM magnesium sulphate, and 450 mM sodium chloride. The aims of our study were: (1) to investigate the germination (germination rates, germination success) of Frankenia seeds to four salinity levels (0%, 10%, 20%, 30%), (2) to test for possible interaction effects between seed mass, germination, and salinity, and (3) to examine the effect of salinity levels on the inhibition of germination and/or seed damage. Species varied in their salt tolerance for germination rates and success. Species with larger seeds had higher germination rates and germination success for high salinity levels. Several species did not germinate well at any salinity level. Finally, no seeds were adversely affected by exposure to high salinity levels pre-germination. There is potential for including some Frankenia species in remediation and revegetation projects in areas affected by salinity, and also as garden plants in saline regions.  相似文献   

15.
A prospective observational study was carried out at Alder Hey Children's Hospital, Liverpool, England, UK on children aged 1–6 years attending the pathology department for routine blood tests (n = 225). Whole blood manganese concentrations were measured plus the following markers of iron status; haemoglobin, MCV, MCH, RBC count, ferritin, transferrin saturation and soluble transferrin receptors. Multiple regression analysis was performed, with blood manganese as the dependent variable and factors of iron status, age and gender as independent variables. A strong relationship between blood manganese and iron deficiency was demonstrated (adjusted R2 = 34.3%, p < 0.001) and the primary contributing factors to this relationship were haematological indices and soluble transferrin receptors. Subjects were categorised according to iron status using serum ferritin, transferrin saturation and haemoglobin indices. Children with iron deficiency anaemia had higher median blood manganese concentrations (16.4 μg/L, range 11.7–42.4, n = 20) than children with iron sufficiency (11 μg/L, range 5.9–20.9, n = 59, p < 0.001). This suggests that children with iron deficiency anaemia may be at risk from manganese toxicity (whole blood manganese >20 μg/L), and that this may lead to neurological problems. Treatment of iron deficiency in children is important both to improve iron status and to reduce the risk of manganese toxicity.  相似文献   

16.
Major cyanobacterial blooms (biovolume > 4 mm3 L−1) occurred in the main water reservoirs on the upper Murray River, Australia during February and March 2010. Cyanobacterial-infested water was released and contaminated rivers downstream. River flow velocities were sufficiently high that in-stream bloom development was unlikely. The location has a temperate climate but experienced drought in 2010, causing river flows that were well below the long-term median values. This coupled with very low bed gradients meant turbulence was insufficient to destroy the cyanobacteria in-stream. Blooms in the upper 500 km of the Murray and Edward Rivers persisted for 5 weeks, but in the mid and lower Murray blooms were confined to a small package of water that moved progressively downstream for another 650 km. Anabaena circinalis was the dominant species present, confirmed by 16S rRNA gene sequencing, but other potentially toxic species were also present in smaller amounts. Saxitoxin (sxtA), microcystin (mcyE) and cylindrospermopsin (aoaA) biosynthesis genes were also detected, although water sample analysis rarely detected these toxins. River water temperature and nutrient concentrations were optimal for bloom survival. The operational design of weirs and retention times within weir pools, as well as tributary inflows to and diversions from the Murray River all influenced the distribution and persistence of the blooms. Similar flow, water quality and river regulation factors were underlying causes of another bloom in these rivers in 2009. Global climate change is likely to promote future blooms in this and other lowland rivers.  相似文献   

17.
In the western part of the Carpathian flysch zone, aquifers host several springwater chemistry types. Four vegetation types, distinguished along the poor-rich gradient (tufa-forming and peat forming brown moss fens, moderately rich and poorSphagnum fens), have been compared with respect to the main habitat factors. Water calcium and magnesium concentrations, pH and conductivity as well as the soil organic carbon content were the properties measured that showed the strongest correlation with the main vegetation gradient (the poor-rich gradient). Further, significant differences in iron, sodium, potassium, sulphate and phosphate concentrations were also found between pairs of related vegetation types. The range of calcium concentrations is wide (2–300 mg/l). The calcium concentration in tufa-forming springs is higher than values usually reported from northern and western Europe. Tufa formation is influenced not only by high calcium concentrations, but also by the total chemical composition of springwater and both climatic and topographic conditions. There is a great excess of cations over Cl and SO 4 2− , balanced by HCO 3 and CO 3 2− in springs with the most intense tufa precipitation. Unusually high calcium concentrations combined with high iron concentrations were found in peat-forming brown moss fens. RichSphagnum-fens with calcitolerantSphagnum species are distinctively low in phosphates. The Western Carpathian poor fens dominated bySphagnum flexuosum have water and soil calcium concentrations comparable to those reported from rich fens of some other areas. The springwater of these fens are rich in iron, phosphates and sulphates. The poorest spring fens withSphagnum fallax, S. magellanicum, S. papillosum andS. auriculatum are not only poor in calcium, but also in iron, sodium and potassium.  相似文献   

18.
The seasonal changes in concentrations of calcium, iron, potassium, magnesium, manganese and sodium in above- and below-ground parts of eelgrass (Zostera marina L.) were studied at three locations in the Limfjord, Denmark.The concentrations of calcium, iron and manganese in eelgrass differed significantly at the three stations. Above-ground parts of eelgrass contained significantly higher concentrations of potassium and manganese than below-ground parts, whereas the concentrations of iron and sodium were highest in the below-ground parts. Calcium and mangnesium concentrations in the two fractions were not significantly different.Significant seasonal variations were observed in the concentrations of calcium, potassium, manganese and sodium in above-ground parts of eelgrass and in the concentrations of iron, magnesium and sodium in below-ground parts. Iron, potassium, manganese and, to an extent, sodium showed a similar seasonal pattern with maximum concentrations in the summer and minimum concentrations in the spring or fall, whereas calcium concentrations in the above-ground parts showed the opposite pattern.The observed seasonal variation patterns are discussed in relation to the respective metals and changes in environmental factors.  相似文献   

19.
BackgroundBariatric surgery is widely performed to improve obesity-related disorders, but can lead to nutrient deficiencies. In this study we examined serum trace element concentrations before and after bariatric surgery.MethodsWe obtained serum trace element concentrations by inductively coupled plasma-mass spectrometry (ICP-MS) method in 437 patients (82% women, median preoperative body-mass index 46.7 kg/m2 [interquartile range 42–51]) undergoing either gastric banding (22.7%), sleeve gastrectomy (20.1%), or gastric bypass (57.3%) procedures. Trace element data were available for patients preoperatively (n = 44); and 3 (n = 208), 6 (n = 174), 12 (n = 122), 18 (n = 39), 24 (n = 44) and 36 months (n = 14) post-operatively. All patients were recommended to take a multivitamin-mineral supplement after surgery.ResultsCopper deficiency was found in 2% of patients before surgery; and after surgery deficiency rates ranged from 0 to 5% with no significant change in median concentrations during follow-up (p = 0.68). Selenium deficiency was reported in 2% of patients before surgery; and after surgery deficiency rates ranged from 11 to 15% with a near-significant change in median concentrations (p = 0.056). Zinc deficiency was reported in 7% before surgery; and after surgery deficiency rates ranged from 7 to 15% with no significant change in median concentrations (p = 0.39).ConclusionsIn bariatric surgery patients recommended to take multivitamin-mineral supplements, serum copper, zinc and selenium concentrations were mostly stable during the first years after bariatric surgery. There was a possible tendency for selenium concentrations to decline during the early postoperative period.  相似文献   

20.
This study addressed distribution of calcium and strontium in Siberian spruce (Picea obovata Ledeb.) and Siberian fir (Abies sibirica Ledeb.) tree-rings and its dependence on these woody species cell structure. Calcium concentration was found to decrease gradually from earlywood to latewood, whereas strontium showed an opposite trend. However, their trends at the scale of several rings are co-directed in the samples analyzed. A strong linear relationship was identified between the distribution of Sr/Ca concentration ratio and tree-ring density profile for both woody species. Radiographic density of Siberian spruce tree-ring cell walls and Ca and Sr concentrations in them were determined to have negative correlation with cell wall thickness. In earlywood of annual rings of a spruce the radiographic density of cell wall reaches 2.0 g/cm3 and decreases to 1.2 g/cm3 in latewood. The hypothesis put forward in this study to explain these strontium and calcium distributions in the tree-rings is that the concentrations of the element ions change with development of different cell wall layers. The high value of radiographic density of a cellular wall in earlywood and its relationship with cell wall thickness can be explained by the presence of ions of calcium in a cellular wall. Ions of calcium absorb X-ray radiation more strongly in comparison with light chemical elements. It can become the reason of observable relationship between radiographic density of cell wall and cell wall thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号