首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We overexpressed and purified 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 (Ps3αHSD) and its mutants where the active site residues known as the SYK triad, Ser114, Tyr153, and Lys157, were mutated. Ps3αHSD catalyzes the reaction by using a nucleotide cofactor. The NADH binding affinity of K157A mutant was much lower than that of the wild-type, mainly due to loss of a hydrogen bond. The decreased affinity would result in decreased kcat. Compared to the wild-type, the mutants S114A and Y153F showed higher Km and lower kcat values in both oxidation and reduction reactions. Simultaneous mutation of S114A and Y153F resulted in a significant decrease in kcat relative to the single mutant. These results are supported by the notion that Tyr153 is a catalytic base and Ser114 would be a substitute. Loss of hydrogen bonding with NADH upon the Y153F mutation resulted in increased enthalpy change, partially compensated by increased entropy change.  相似文献   

3.
Zeng J  Liu Y  Wu L  Li D 《Biochimica et biophysica acta》2007,1774(12):1628-1634
Medium-chain acyl-CoA dehydrogenase (MCAD) and acyl-CoA oxidase (ACO) are key enzymes catalyzing the rate-determining step for the beta-oxidation of fatty acids. Tyr375 of MCAD is conserved in all acyl-CoA dehydrogenases and is an important residue for substrate binding. Four Tyr375 variant enzymes of rat liver MCAD were obtained through site-directed mutagenesis. Y375K was found to have intrinsic acyl-CoA oxidase activity, which was confirmed using HPLC analysis, while the wild-type and other Tyr375 variant enzymes did not show detectable oxidase activity. The kinetic parameters for the oxidase activity of Y375K variant enzyme were determined to be k(cat) of 320+/-80 h(-1) and K(M) of 30+/-15 microM using hexanoyl-CoA as the substrate. The oxidase activity of Y375K increased more than 200 times compared with that reported for the MCAD wild-type enzyme from mammalian sources. Molecular modeling study shows that the solvent accessible area for Y375K variant enzyme is wider than that of the wild-type enzyme, which indicates that Tyr375 may function as a switch against solvent accession. The mutation of this residue to Lys375 allows molecular oxygen to enter into the catalytic site serving as the electron acceptor for the reduced FAD cofactor.  相似文献   

4.
Plasmodium falciparum triosephosphate isomerase (PfTIM) is known to be functional only as a homodimer. Although many studies have shown that the interface Cys13 plays a major role in the stability of the dimer, a few reports have demonstrated that structurally conserved Tyr74 may be essential for the stability of PfTIM dimer. To understand the role of Tyr74, we have performed molecular dynamics (MD) simulations of monomeric and dimeric PfTIM mutated to glycine and cysteine at position 74. Simulations of the monomer revealed that mutant Tyr74Gly does not produce changes in folding and stability of the monomer. Interestingly, comparison of the flexibility of Tyr74 in the monomer and dimer revealed that this residue possesses an intrinsic restricted mobility, indicating that Tyr74 is an anchor residue required for homodimerization. Tyr74 also appears to play an important role in binding by facilitating the disorder-to-order transitions of loops 1 and 3, which allows Cys13 to form favorable interactions with loop 3 and Lys12 to be locked in a favorable position for catalysis. High-temperature MD simulations of the wild-type and Tyr74Gly PfTIM dimers showed that the aromatic moiety of Tyr74 is necessary to preserve the geometry and native contacts between loops 1 and 3 at the interface of the dimer. Disulfide cross-linking between mutant Tyr74Cys and Cys13 further revealed that Tyr74 stabilizes the geometry of loop 1 (which contains the catalytic residue Lys12) and the interactions between loops 1 and 3 via aromatic-aromatic interactions with residues Phe69, Tyr101, and Phe102. Principal component analysis showed that Tyr74 is also necessary to preserve the collective motions in the dimer that contribute to the catalytic efficiency of PfTIM dimer. We conclude that Tyr74 not only plays a role in the stability of the dimer, but also participates in the dimerization process and collective motions via coupled disorder-to-order transitions of intrinsically disordered regions, necessary for efficiency in the catalytic function of PfTIM.  相似文献   

5.
Yeast xylose reductases are hypothesized as hybrid enzymes as their primary sequences contain elements of both the aldo-keto reductases (AKR) and short chain dehydrogenase/reductase (SDR) enzyme families. During catalysis by members of both enzyme families, an essential Lys residue H-bonds to a Tyr residue that donates proton to the aldehyde substrate. In the Saccharomyces cerevisiae xylose reductase, Tyr49 has been identified as the proton donor. However, the primary sequence of the enzyme contains two Lys residues, Lys53 and Lys78, corresponding to the conserved motifs for SDR and AKR enzyme families, respectively, that may H-bond to Tyr49. We used site-directed mutagenesis to substitute each of these Lys residues with Met. The activity of the K53M variant was slightly decreased as compared to the wild-type, while that of the K78M variant was negligible. The results suggest that Lys78 is the essential residue that H-bonds to Tyr49 during catalysis and indicate that the active site residues of yeast xylose reductases match those of the AKR, rather than SDR, enzymes. Intrinsic enzyme fluorescence spectroscopic analysis suggests that Lys78 may also contribute to the efficient binding of NADPH to the enzyme.  相似文献   

6.
The familial amyloidotic polyneuropathy is strictly associated with point mutations in the coding region of the transthyretin gene. Here, we focused on the mutations in the monomer-monomer and dimer-dimer interaction site of the transthyretin tetramer. The naturally occurring amyloidogenic Tyr114His (Y114H) and Tyr116Ser (Y116S) variants formed more amyloid fibrils than the wild-type transthyretin, nonamyloidogenic Tyr116Val (Y116V) variant, and other amyloidogenic variants in previous studies. The secondary, tertiary, and quaternary structural stabilities of the Y114H and Y116S variants were compared with those of the wild-type transthyretin and nonamyloidogenic Y116V variant. The unfolding data indicated that the amyloidogenic Y114H and Y116S mutations reduced the stability of the secondary, tertiary, and quaternary structure. Our results also indicated that the unfolding of Y114H and Y116S is less cooperative than that of the wild-type transthyretin. Moreover, the tetramer of the amyloidogenic variants dissociated to the monomer even at pH 7.0, indicating the importance of Tyr114 and Tyr116 in strengthening the contacts between monomers and/or dimers of the transthyretin molecule.  相似文献   

7.
Atomic models representing the electron density of two crystalline forms of aspartate carbamoyltransferase from Escherichia coli are reported here. The unliganded form (R32 crystal symmetry) and the CTP-liganded form (P321 crystal symmetry) have been refined independently at resolutions of 3.0 å and 2.8 Å, respectively, each to a crystallographic R-factor of 27%. The molecular models include at least 95% of the theoretical number of atoms for the aspartate Carbamoyltransferase molecule based on chemical sequence information. We provide details of the refinement process for the two structures, and an evaluation of the accuracy of the molecular models.For the most part, the regulatory and catalytic chains of the unliganded enzyme and the CTP-liganded form are in similar conformations. Large conformational differences in the CTP and native forms exist, however, specifically in the region of CTP binding to the regulatory chain. In addition, a segment of ten amino acid residues, which includes Lys83 and Lys84 of the catalytic chain, is disordered in the CTP-liganded form, in contrast to the native structure, where the same residues have refined well into density.Each catalytic monomer of aspartate carbamoyltransferase is in contact with three catalytic chains and two regulatory monomers. Each regulatory monomer borders on one other regulatory chain and two catalytic chains. The catalytic trimera are in contact in the hexamer; residues important to homotropic effects and catalysis (Tyr165 and Tyr232) are integral parts of the interface. We present a thorough survey of interface regions, cataloging polar interactions between sidechains throughout the molecule.We discuss, in context with the present structures, the chemical modifications and mutations of the enzyme. Highlighted specifically are Cys47, Tyr165 and Tyr232, Lys83, Lys84, Trp209 and Trp279 and Gly128, residues of demonstrated importance to the catalytic of regulatory function or aspartate carbamoyltransferase. The spatial arrangement of “active site” residues argues for a catalytic pocket shared between two monomers within catalytic subunit.  相似文献   

8.
Abstract The PIS gene for an enzyme phosphatidylinositol synthase having an increased K m for myo-inositol, was isolated from Saccharomyces cerevisiae . The mutant PIS gene contained a CAA codon at position 114 instead of the CAC codon observed in the wild-type gene, resulting in alteration of the amino acid from His to Gln. Oligonucleotide mediated site-directed mutagenesis of PIS at codon 114 revealed that mutant genes with codons for Ala, Thr and Leu could support yeast cell growth in vivo, but those for Asp, Lys and Tyr could not. All mutant enzymes when expressed in Escherichia coli showed greatly reduced in vitro activity.  相似文献   

9.
Xylose reductase catalyzes the NAD(P)H-dependent reduction of xylose to xylitol and is essential for growth on xylose by yeasts. To understand the nature of coenzyme binding to the Pichia stipitis xylose reductase, we investigated the role of the strictly conserved Lys270 in the putative IPKS coenzyme binding motif by site-directed mutagenesis. The Lys270Met variant exhibited lower enzyme activity than the wild-type enzyme. The apparent affinity of the variant for NADPH was decreased 5–16-fold, depending on the substrate used, while the apparent affinity for NADH, measured using glyceraldehyde as the substrate, remained unchanged. This resulted in 4.3-fold higher affinity for NADH over NADPH using glyceraldehyde as the substrate. The variant also showed a 14-fold decrease in Km for xylose, but only small changes were observed in Km values for glyceraldehyde. The wild-type enzyme, but not the Lys270Met variant, was susceptible to modification by the Lys-specific pyridoxal 5′-phosphate. Results of our chemical modification and site-directed mutagenesis study indicated that Lys270 is involved in both NADPH and d-xylose binding in the P. stipitis xylose reductase.  相似文献   

10.
The hydrolytic activity of a thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 (AmyL) toward soluble starch was enhanced through optimization of amino acid (aa) residues situated near the substrate binding site. Twenty-four selected aa residues were replaced with Ala, and Gly429 and Gly550 were altered to Lys and Glu, respectively, based on comparison of AmyL's aa sequence with related enzymes. Y426A, H431A, I509A, and K549A showed notably higher activity than the wild type at 162–254% of wild-type activity. Tyr426, His431, and Ile509 were predicted to be located near subsite −2, while Lys549 was near subsite +2. Ser, Ala, Ala, and Met were found to be the best aa residues for the positions of Tyr426, His431, Ile509, and Lys549, respectively. Combinations of the optimized single mutations at distant positions were effective in enhancing catalytic activity. The double-mutant enzymes Y426S/K549M, H431A/K549M, and I509A/K549M, combining two of the selected single mutations, showed 340%, 252%, and 271% of wild type activity, respectively. Triple and quadruple-mutant enzymes of the selected mutations did not show higher activity than the best double-mutant, Y426S/K549M.  相似文献   

11.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

12.
The characteristic oxidation or reduction reaction mechanisms of short‐chain oxidoreductase (SCOR) enzymes involve a highly conserved Asp‐Ser‐Tyr‐Lys catalytic tetrad. The SCOR enzyme Q9HYA2 from the pathogenic bacterium Pseudomonas aeruginosa was recognized to possess an atypical catalytic tetrad composed of Lys118‐Ser146‐Thr159‐Arg163. Orthologs of Q9HYA2 containing the unusual catalytic tetrad along with conserved substrate and cofactor recognition residues were identified in 27 additional species, the majority of which are bacterial pathogens. However, this atypical catalytic tetrad was not represented within the Protein Data Bank. The crystal structures of unligated and NADPH‐complexed Q9HYA2 were determined at 2.3 Å resolution. Structural alignment to a polyketide ketoreductase (KR), a typical SCOR, demonstrated that Q9HYA2's Lys118, Ser146, and Arg163 superimposed upon the KR's catalytic Asp114, Ser144, and Lys161, respectively. However, only the backbone of Q9HYA2's Thr159 overlapped KR's catalytic Tyr157. The Thr159 hydroxyl in apo Q9HYA2 is poorly positioned for participating in catalysis. In the Q9HYA2–NADPH complex, the Thr159 side chain was modeled in two alternate rotamers, one of which is positioned to interact with other members of the tetrad and the bound cofactor. A chloride ion is bound at the position normally occupied by the catalytic tyrosine hydroxyl. The putative active site of Q9HYA2 contains a chemical moiety at each catalytically important position of a typical SCOR enzyme. This is the first observation of a SCOR protein with this alternate catalytic center that includes threonine replacing the catalytic tyrosine and an ion replacing the hydroxyl moiety of the catalytic tyrosine.  相似文献   

13.
 The catalytic mechanism of the copper-containing enzyme galactose oxidase involves a protein radical on Tyr272, one of the equatorial copper ligands. The first step in this mechanism has been proposed to be the abstraction of a proton from the alcohol substrate by Tyr495, the axial copper ligand that is weakly co-ordinated to copper. In this study we have generated and studied the properties of a Y495F variant to test this proposal. X-ray crystallography reveals essentially no change from wild-type other than loss of the tyrosyl hydroxyl group. Visible spectroscopy indicates a significant change in the oxidised Y495F compared to wild-type with loss of a broad 810-nm peak, supporting the suggestion that this feature is due to inter-ligand charge transfer via the copper. The presence of a peak at 420 nm indicates that the Y495F variant remains capable of radical formation, a fact supported by EPR measurements. Thus the significantly reduced catalytic efficiency (1100-fold lower k cat / K m) observed for this variant is not due to an inability to generate the Tyr272 radical. By studying azide-induced pH changes, it is clear that the reduced catalytic efficiency is due mainly to the inability of Y495F to accept protons. This provides definitive evidence for the key role of Tyr495 in the initial proton abstraction step of the galactose oxidase catalytic mechanism. Received: 17 December 1996 / Accepted: 12 March 1997  相似文献   

14.
Previous covalent modification studies showed that tyrosine 114 of Escherichia coli ADP-glucose synthetase is involved in substrate binding (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). We have prepared, via site-directed mutagenesis, an E. coli ADP-glucose synthetase variant (Phe114) containing a Tyr114 to Phe substitution in order to test whether the phenolic hydroxyl group plays a critical role in catalysis. Kinetic characterization of Phe114 ADP-glucose synthetase indicates that the Tyr114 hydroxyl is not obligatory for the enzyme catalysis. However, the variant enzyme showed altered properties. It showed a decreased apparent affinity for the substrates. The variant enzyme showed less than 2-fold activation by 5 mM fructose 1,6-bisphosphate in the ADP-glucose synthesis direction. In contrast, in the pyrophosphorolysis direction, the mutant enzyme showed about a 30-fold activation by 5 mM fructose 1,6-bisphosphate. The variant enzyme is heat-labile compared to wild type enzyme. It lost about 60% enzyme activity on incubation at 65 degrees C for 5 min in the presence of 30 mM Pi. The wild type enzyme is stable under these conditions. The results indicate that tyrosine 114 is involved directly or indirectly in enzyme catalysis, but is not obligatory for the enzyme catalysis. Conversion of Tyr114 to Phe also alters the regulatory properties of the enzyme with respect to activation by fructose-1,6-P2 and inhibition by AMP.  相似文献   

15.
Catalase-peroxidases (KatGs) are heme peroxidases with a catalatic activity comparable to monofunctional catalases. They contain an unusual covalent distal side adduct with the side chains of Trp(122), Tyr(249), and Met(275) (Synechocysis KatG numbering). The known crystal structures suggest that Tyr(249) and Met(275) could be within hydrogen-bonding distance to Arg(439). To investigate the role of this peculiar adduct, the variants Y249F, M275I, R439A, and R439N were investigated by electronic absorption, steady-state and transient-state kinetic techniques and EPR spectroscopy combined with deuterium labeling. Exchange of these conserved residues exhibited dramatic consequences on the bifunctional activity of this peroxidase. The turnover numbers of catalase activity of M275I, Y249F, R439A, and R439N are 0.6, 0.17, 4.9, and 3.14% of wild-type activity, respectively. By contrast, the peroxidase activity was unaffected or even enhanced, in particular for the M275I variant. As shown by mass spectrometry and EPR spectra, the KatG typical adduct is intact in both Arg(439) variants, as is the case of the wild-type enzyme, whereas in the M275I variant the covalent link exists only between Tyr(249) and Trp(122). In the Y249F variant, the link is absent. EPR studies showed that the radical species formed upon reaction of the Y249F and R439A/N variants with peroxoacetic acid are the oxoferryl-porphyrin radical, the tryptophanyl and the tyrosyl radicals, as in the wild-type enzyme. The dramatic loss in catalase activity of the Y249F variant allowed the comparison of the radical species formed with hydrogen peroxide and peroxoacetic acid. The EPR data strongly suggest that the sequence of intermediates formed in the absence of a one electron donor substrate, is por(.-)(+) --> Trp(.-) (or Trp(.-)(+)) --> Tyr(.-). The M275I variant did not form the Trp(.-) species because of the dramatic changes on the heme distal side, most probably induced by the repositioning of the remaining Trp(122)-Tyr(249) adduct. The results are discussed with respect to the bifunctional activity of catalase-peroxidases.  相似文献   

16.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

17.
We have shown before that mutation of Gly114 to Arg enhances folding of hexameric nucleoside diphosphate kinase (HsNDK) from Halobacterium salinarum. In this study, we constructed three mutant forms, Gly114Lys (G114K), Gly114Ser (G114S) and Gly114Asp (G114D), to further clarify the role residue 114 plays in the stability and folding of HsNDK. While expression of G114D mutant resulted in inactive enzyme, other mutant HsNDKs were successfully expressed in active form. The G114K mutant, similar to Gly114Arg (G114R) mutant, refolded in 1 M NaCl after heat-denaturation, under which the wild-type HsNDK and G114S proteins showed no refolding.  相似文献   

18.
The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.  相似文献   

19.
The molecular mechanism of the autolysis of rat alpha-chymotrypsin B was investigated. In addition to the two already known autolytic sites, Tyr146 and Asn147, a new site formed by Phe114 was identified. The former two sites and the latter one are located in the autolysis and the interdomain loops, respectively. By eliminating these sites by site-directed mutagenesis, their involvement in the autolysis and autolytic inactivation processes was studied. Mutants Phe114-->Ile and Tyr146-->His/Asn147-->Ser, that had the same enzymatic activity and molecular stability as the wild-type enzyme, displayed altered routes of autolytic degradation. The Phe114-->Ile mutant also exhibited a significantly slower autolytic inactivation (its half-life was 27-fold longer in the absence and sixfold longer in the presence of Ca2+ ions) that obeyed a first order kinetics instead of the second order displayed by wild-type chymotrypsin inactivation. The comparison of autolysis and autolytic inactivation data showed that: (a) the preferential cleavage of sites followed the order of Tyr146-Asn147 --> Phe114 --> other sites; (b) the cleavage rates at sites Phe114 and Tyr146-Asn147 were independent from each other; and (c) the hydrolysis of the Phe114-Ser115 bond was the rate determining step in autolytic inactivation. Thus, it is the cleavage of the interdomain loop and not of the autolysis or other loops that determines the half-life of chymotrypsin activity.  相似文献   

20.
Lebedev N  Karginova O  McIvor W  Timko MP 《Biochemistry》2001,40(42):12562-12574
Fluorescence spectroscopic and kinetic analysis of photochemical activity, cofactor and substrate binding, and enzyme denaturation studies were performed with highly purified, recombinant pea NADPH:protochlorophyllide oxidoreductase (POR) heterologously expressed in Escherichia coli. The results obtained with an individual stereoisomer of the substrate [C8-ethyl-C13(2)-(R)-protochlorophyllide] demonstrate that the enzyme photoactive state possesses a characteristic fluorescence maximum at 646 nm that is due to the presence of specific charged amino acids in the enzyme catalytic site. The photoactive state is converted directly into an intermediate having fluorescence at 685 nm in a reaction involving direct hydrogen transfer from the cofactor (NADPH). Site-directed mutagenesis of the highly conserved Tyr275 (Y275F) and Lys279 (K279I and K279R) residues in the enzyme catalytic pocket demonstrated that the presence of these two amino acids in the wild-type POR considerably increases the probability of photoactive state formation following cofactor and substrate binding by the enzyme. At the same time, the presence of these two amino acids destabilizes POR and increases the rate of enzyme denaturation. Neither Tyr275 nor Lys279 plays a crucial role in the binding of the substrate or cofactor by the enzyme. In addition, the presence of Tyr275 is absolutely necessary for the second step of the protochlorophyllide reduction reaction, "dark" conversion of the 685 nm fluorescence intermediate and the formation of the final product, chlorophyllide. We propose that Tyr275 and Lys279 participate in the proper coordination of NADPH and PChlide in the enzyme catalytic site and thereby control the efficiency of the formation of the POR photoactive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号