首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this study, the non-magnetic and the magnetic cross-linked enzyme aggregates (CLEAs) from Candida rugosa lipase were synthesized to catalyze the kinetic resolution reaction of naproxen methyl ester (NME). Magnetic iron oxide nanoparticles (MIONPs) were produced through co-precipitation method and their surfaces were modified by silanization reaction. The MIONPs were used as a platform to synthesize the magnetic CLEAs (M-CLEAs). The biocatalysts and MIONPs synthesized were characterized by FTIR spectroscopy and SEM analysis. The kinetic resolution of racemic NME was studied in aqueous buffer solution/isooctane biphasic system to compare the performance of M-CLEAs and CLEAs. The effects of reaction parameters such as temperature, pH, stirring rate on the enantiomeric excess of the substrate (ees%) were investigated in a batch reactor system. The activity recovery of CRL enzyme in CLEAs was higher than M-CLEAs. Compared with M-CLEAs, CLEAs biocatalysts had previously reached ees% values. Although both biocatalysts showed similar cavity structure from SEM analysis, the lower performance of M-CLEAs may be due to the different microenvironments of M-CLEAs from CLEAs. However, the reusability performance of M-CLEAs was higher than that of CLEAs. The optimal reaction conditions for M-CLEAs and CLEAs were found to be 37?°C, pH 7.5, and 300?rpm.  相似文献   

2.
《Process Biochemistry》2010,45(2):259-263
The para-nitrobenzyl esterase (PNBE), which was encoded by pnbA gene from Bacillus subtilis, was immobilized on amino-functionalized magnetic supports as cross-linked enzyme aggregates (CLEA). The maximum amount of PNBE-CLEA immobilized on the magnetic beads using glutaraldehyde as a coupling agent was 31.4 mg/g of beads with a 78% activity recovery after the immobilization. The performance of immobilized PNBE-CLEA was evaluated under various conditions. As compared to its free form, the optimal pH and temperature of PNBE-CLEA were 1 unit (pH 8.0) and 5 °C higher (45 °C), respectively. Under different temperature settings, the residual enzyme activity was highest for the PNBE-CLEA, followed by covalently fixed PNBE without further cross-linking and the free PNBE. During 40 days of storage pried, the PNBE-CLEA maintained more than 90% of its initial activity while the free PNBE maintained about 60% under the same condition. PNBE-CLEA also retained more than 80% activity after 30 reuses with 30 min of each reaction time, indicating stable reusability under aqueous medium.  相似文献   

3.
Negatively charged 4 nm bimetallic NiII–FeIII cyanide-bridged nanoparticles were obtained and isolated by different coating agents. The magnetic properties of the particles were studied in the powder form and in diluted samples. A spin-glass like behaviour occurs in the concentrated sample, while the magnetic behaviour of the diluted ones strongly depends on the method used to isolate the nanoparticles. Only high dilution in a polymer matrix leads to a single-domain superparamagnetic behaviour, with a blocking temperature of 3.5 K.  相似文献   

4.
Highly active CALB cross-linked enzyme aggregates (CLEAs) were synthesized using a layered methodology based on the synthesis of a cross-linked protein cofeeder core over which an external layer of lipase was later cross-linked. The layered CALB CLEAs were characterized in terms of their catalytic activity in three different test reactions: esterification of oleic acid and ethanol in absence of solvents, esterification of oleic acid and heptanol in organic medium, and hydrolysis of triolein in emulsioned medium. The impact of the cross-linker/protein mass ratio on CLEAs activity, and its evolution with storage time were evaluated in the solventless synthesis of ethyloleate. The amount of cross-linker used showed to be a key parameter for the evolution of the catalytic activity of CLEAs during storage. Under the best conditions found, hyperactivated CALB CLEAs with up to 188% of recovered activity in ethyl oleate synthesis were obtained. In terms of hydrolytic activity mature layered CALB CLEAs showed a retained activity of 68%. The assay of dried mature layered CALB CLEAs in heptyl oleate synthesis showed catalytic activities much higher than the one exhibited by free CALB, reaching 1 h-fatty acid conversions of 14% and 2%, respectively. The high catalytic activity shown by layered CALB CLEAs, suggests that they are an interesting alternative specially for the catalysis of fatty acid esterifications in both organic and solventless medium.  相似文献   

5.
Polyarginine has been successfully bound onto iron oxide nanoparticles via carbodiimide activation as a highly positively charged magnetic nano-adsorbent for protein separation. They were nearly superparamagnetic with a mean diameter of 10.3 ± 2.36 nm, and the binding process did not change the spinel structure of iron oxide. From the analyses of FTIR spectra and zeta potential, the binding of polyarginine on the surface of iron oxide was confirmed and the resultant polyarginine-coated magnetic nanoparticles (PA-MNPs) were positively charged even up to pH 11. By thermogravimetric analysis, the typical product contained about 7.1 wt% of polyarginine. From the adsorption of the proteins with different pI values, the resultant PA-MNPs were found to be quite efficient for the fast and effective adsorption of acid proteins. For the typical acid protein, bovine serum albumin (BSA), the adsorption equilibrium was achieved within few minutes and obeyed the Langmuir isotherm equation. At pH 7 and 25 °C, the maximum adsorption capacity and equilibrium constant were 67.6 mg/g and 0.0623 L/mg, respectively. Moreover, by SDS–polyacrylamide gel electrophoresis, the capability of PA-MNPs for the separation of BSA-lysozyme mixture and egg white was further confirmed. Accordingly, the PA-MNPs were useful for the fast and effective magnetic recovery of acid proteins.  相似文献   

6.
d-Amino acid oxidase from Rhodosporidium toruloides (RtDAO) and Fe3O4 magnetic nanoparticles were encapsulated simultaneously within biomimetic silica, as mediated by polyallylamine. The capacity for this enzyme reached 193 mg/g of biomimetic silica when 15 mg/ml RtDAO was used during encapsulation; the average encapsulation efficiency was approximately 74%. The Tm value (the temperature at which 50% of the initial activity was retained after 1 h of incubation) was increased from 44.3 °C of the free RtDAO to 57.7 °C, clearly indicating the thermal stability was improved by encapsulation. In the presence of 50 mM hydrogen peroxide, encapsulated RtDAO had a half-life of 148 min, an approximately 2-fold increase in resistance to hydrogen peroxide as compared to 78-min half-life of the free form. The encapsulation process is simple and can be completed within minutes; besides, the resultant enzymes can be recovered easily under magnetic field. Such preparation of encapsulated d-amino acid oxidase could be exploited for many potential applications.  相似文献   

7.
Synthesis of propyl-β-galactoside catalyzed by Aspergillus oryzae β-galactosidase in soluble form was optimized using response surface methodology (RSM). Temperature and 1-propanol concentration were selected as explanatory variables; yield and productivity were chosen as response variables. Optimal reaction conditions were determined by weighing the responses through a desirability function. Then, synthesis of propyl-β-galactoside was evaluated at the optimal condition previously determined, with immobilized β-galactosidase in glyoxyl-agarose and amino-glyoxyl-agarose, and with cross-linked aggregates (CLAGs). Yields of propyl-β-galactoside obtained with CLAGs, amino-glyoxyl-agarose and glyoxyl-agarose enzyme derivatives were 0.75, 0.81 and 0.87 mol/mol and volumetric productivities were 5.2, 5.6 and 5.9 mM/h, respectively, being significantly higher than the corresponding values obtained with the soluble enzyme: 0.47 mol/mol and 4.4 mM/h. As reaction yield was increased twofold with the glyoxyl-agarose derivative, this catalyst was chosen for evaluating the synthesis of propyl-β-galactoside in repeated batch operations. Then, after ten sequential batches, the efficiency of catalyst use was 115% higher than obtained with the free enzyme. Enzyme immobilization also favored product recovery, allowing catalyst reuse, and avoiding browning reactions. Propyl-β-galactoside was recovery by extraction in 90%v/v acetone with a purity higher than 99% and its synthesis was confirmed by mass spectrometry.  相似文献   

8.
The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136 h of incubation at 50 °C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks.  相似文献   

9.
Paramagnetic aldehyde-functionalized mesostructured cellular foams (PAMCFs), synthesized by grafting 3-aminopropyltriethoxysilane modified Fe3O4 (NH2-Fe3O4) nanoparticles with larger particle size than the window pore size of MCFs on the outer surface of aldehyde-functionalized mesostructured cellular foams (AMCFs), were investigated as efficient supports for immobilization of penicillin G acylase (PGA). The results show that NH2-Fe3O4 nanoparticles were successfully grafted on the outer surface of AMCFs and PGA molecules were mainly immobilized covalently on the inner surface of PAMCFs, which was because amino groups of NH2-Fe3O4 nanoparticles or PGA molecules reacted with aldehyde groups of AMCFs or PAMCFs to form imine bonds. PGA/PAMCFs-15 showed a rather high initial activity of 9563 U g−1 and retained 89.1% of its initial activity after recycled for 10 times. PGA/PAMCFs are easily recycled by magnetic field in order to replace tedious separation of high-speed centrifugation for mesoporous materials.  相似文献   

10.
Acetylcholine sensor is successfully prepared by using immobilized enzymes, i.e., acetylcholinesterase and choline oxidase within separate hybrid mesoporous silica membranes with 12 nm pore diameter (F127M). The measurement was based on the detection of hydrogen peroxide produced by two sequential enzyme reactions. The determination range and the response time are 6.0–800 μM and within approximately 3 min, respectively. The sensor is very stable compared to free enzymes and 80% of the initial response was maintained even after storage for 80 days. These results show that two enzymes are successfully immobilized and well stabilized, and at the same time, two sequential enzyme reactions efficiently proceed within the separate hybrid mesoporous membranes. Further, we studied the possible detection of organophosphorus pesticides in terms of the inhibition of acetylcholinesterase activity, i.e., the decrease of current response, and demonstrated that the nanomolar concentrations of pesticide (DZN-oxon) can be detected with our sensor.  相似文献   

11.
Co–B/SiO2/NH2 magnetic nanoparticles (NPs) were prepared from a silica shell-coated Co–B core using the Stöber method and amine-modification on the surface. Glucose oxidase (GOD) was covalently immobilized on the surface of Co–B/SiO2/NH2 NPs using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) as an activating agent. The magnetic NPs characteristics, such as the synthesis of Co–B/SiO2/NH2 NPs, effect of pH, temperature, and concentration of buffer for enzyme immobilization, were investigated. The optimal reaction conditions for immobilization were determined to be 0.1 M of phosphate buffer solution, pH 7.0, and 5 °C. In the case of immobilized GOD without d-glucose and with 0.1 M of d-glucose for blocking, 22.98 U/g and 24.83 U/g of their original activity were retained after 7 reuses, respectively.  相似文献   

12.
《Process Biochemistry》2014,49(1):90-94
FastPrep cross-linked enzyme aggregates of N-acetylneuraminate aldolase from Staphylococcus carnosus (ScNAL-FpCLEAs) were prepared in order to improve the synthesis of 2-keto-3-deoxy-d-glycero-galactononulosonic acid (KDN), an important building block for therapeutic glycolipids and a possible marker for human prostate cancer. ScNAL-FpCLEAs showed improved thermostability compared with the free enzyme, doubling its half-life at 60 °C. When the effect of substrate ratio (pyruvate:d-mannose) and temperature on the yield of KDN was studied at its optimum pH (pH 7.0), 90% conversion in only 8 h was reached in the presence of 0.6 M d-mannose and 1.2 M pyruvate at 37 °C. This is the highest conversion described to date for enzymatic KDN synthesis. In addition, ScNAL-FpCLEAs exhibited enhanced catalytic activity and stability and could be recycled 10 times with no loss of activity. These results suggest the biotechnological potential of using FastPrepCLEAs to obtain valuable biocatalysts.  相似文献   

13.
The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40–50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3–18 mg Mn-oxide NPs/kg shows enhanced (P < 0.05) growth performance, including final weight and weight gain (WG). Significant differences (P < 0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0–18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P < 0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P < 0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P > 0.05) alterations in prawns fed with 3.0–18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system.  相似文献   

14.
Enzyme immobilization on magnetic nanoparticles (MNPs) has been a field of intense studies in biotechnology during the past decade. The present study suggests MNPs negatively charged by docusate sodium salt (AOT) as a support for pectinase immobilization. AOT is a biocompatible anionic surfactant which can stabilize MNPs. Electrostatic adsorption can occur between enzyme with positive charge and oppositely charged surface of MNPs (ca. 100 nm). The effect of three factors, i.e. initial enzyme concentration, aqueous pH and AOT concentration in different levels was investigated on pectinase immobilization. Maximum specific activity (1.98 U/mg enzyme) of immobilized pectinase and maximum enzyme loading of 610.5 mg enzyme/g support was attained through the experiments. Initial enzyme concentration is significantly important on both loading and activity of immobilized enzyme, while pH and AOT concentration only affect the amount of immobilized enzyme. Immobilized enzyme on MNPs was recovered easily through magnetic separation. At near pH of immobilization, protein leakage in reusability of immobilized enzyme was low and activity loss was only 10–20% after six cycles. Since pH is associated with immobilization by electrostatic adsorption, the medium pH was changed to improve the release of protein from the support, as well. MNPs properties were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, and Dynamic Light Scattering (DLS) analysis.  相似文献   

15.
Cross-linked enzyme aggregates (CLEAs), protein coated microcrystals (PCMCs), cross-linked protein coated microcrystals (CLPCMCs) of Candida antarctica lipase B (CALB) were used for esterification of glycerol with palmitic acid in acetone under low water condition. With CLEAs, 81% monoglyceride (MG) along with 4.5% diglyceride (DG) were produced at 1% (v/v) water content in 24 h. The water content in the medium was managed by stepwise addition of the molecular sieves at appropriate time intervals. With PCMCs (potassium sulfate as a core material), 82% monoglyceride along with 4.0% diglyceride were obtained, with 0.5% water (v/v) added initially to anhydrous acetone with molecular sieves present in the reaction medium. With CLPCMC (prepared by cross-linking with 200 mM glutaraldehyde), 87% monoglyceride and 3.3% diglyceride were produced in 24 h in presence of 1% (v/v) water (added initially) and with appropriate amount of molecular sieves added in the reaction medium. The results offer a comparative study on the performance of three high activity preparations of CALB for preparation of monopalmitin with ≤10% of the diglyceride content.  相似文献   

16.
BackgroundMagnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR).MethodsThe SAR of Fe3O4 nanoparticles with two different mean sizes, and Ni1 xZnxFe2O4 ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69 kHz and ≈ 100 kHz respectively) and rf magnetic field peak values (up to 100 mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents.ResultsDynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples.ConclusionsA means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods.General significanceThis work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.  相似文献   

17.
Magnetic nanoparticles have been proposed for use as biomedical purposes to a large extent for several years. The development of techniques that could selectively deliver drug molecules to the diseased site, without a concurrent increase in its level in healthy tissues, is currently one of the most active areas of cancer research. The conjugate carboxymethyl starch (CMS)/SPIO nanoparticles were prepared by chemical reaction. Several parameters including the drug/polymer ratios in range of 1:14 were examined to optimize formulation. The size distribution and morphology of nanoparticles and in vitro release profile in phosphate buffer medium (pH 7.4) during 12 h were then investigated. The magnetic NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. The conjugate carboxymethyl starch (CMS)/SPIO nanoparticles were exhaustively studied as controlled-release systems for parenteral administration of a model drug 5-aminosalicyclic acid (mesalamine) and analyzed using various release kinetic studies.  相似文献   

18.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

19.
Conjugation of lactase to magnetic nanoparticles is of interest in biosensor and ingredient processing applications that require high enzyme concentration and catalyst separation from the reaction stream. However, little is known about the effects of these materials on the physicochemical attributes of conjugated lactase. Lactase (Aspergillus oryzae) was covalently attached by carbodiimide chemistry to carboxylic-acid functionalized magnetic particles having a hydrodynamic radius of 18 nm. The resulting enzyme–nanoparticle conjugates were characterized with regard to particle size, zeta potential, enzyme kinetics, temperature and pH stability, catalyst recovery, and secondary structure changes. Following attachment, the materials retained colloidal stability and individual particle characteristics with a zeta potential of ?33 mV compared to ?46 mV for the native particle. The conjugated enzyme showed no changes in secondary structure and exhibited significant catalytic activity with a catalytic efficiency of 2.8 × 103 M?1 s?1 compared to 2.5 × 103 M?1 s?1 for the native enzyme. Relative to the free enzyme, the conjugated enzyme was recovered for repeated use with 78% activity retained after five cycles. This work demonstrates that carboxylic-acid functionalized magnetic nanoparticles can be utilized as a means of producing a simple and effective conjugated-lactase system that achieves both particle and enzyme stability.  相似文献   

20.
Cross-linked enzyme aggregates (CLEAs) are novel type biocatalysts well suited to catalyze reactions of organic synthesis. Penicillin acylase is a versatile enzyme that can both hydrolyze and synthesize β-lactam antibiotics. CLEAs and CLEAs covered with polyionic polymers (polyethyleneimine and dextran sulfate at two different enzyme to polymer ratios) were prepared at varying cross-linking agent to enzyme ratio: 0.15 and 0.25. Results are presented on the effect of such variables on immobilization yield, specific activity, stability and performance of penicillin acylase CLEAs in the kinetically controlled synthesis of cephalexin. The cross-linking agent to enzyme ratio had no significant effect on the specific activity of the CLEAs, but affected immobilization yield, stability in ethylene glycol medium and conversion yield and productivity in the synthesis of cephalexin, being always higher at the lower cross-linking agent to enzyme ratio. Best results were obtained with CLEAs at 0.15 glutaraldehyde to enzyme protein ratio: specific activity of hydrolysis and synthesis was 708 and 325 UI/gCLEA respectively, conversion yield was 87%, specific productivity was 5.4 mmol cephalexin/(gCLEA·h) and 90% of the enzyme remained active after 170 h at operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号