首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

2.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

3.
A highly efficient laccase-producing fungus was isolated from soil and identified as Coltricia perennis SKU0322 by its morphology and by comparison of its internal transcribed spacer (ITS) rDNA gene sequence. Extracellular laccase (Cplac) from C. perennis was purified to homogeneity by anion-exchange and gel filtration chromatography. Cplac is a monomeric glycoprotein with 12% carbohydrate content and a molecular mass of 66 kDa determined by polyacrylamide-gel electrophoresis. Ultraviolet-visible absorption spectroscopy observed type 1 and type 3 copper signals from Cplac. The enzyme acted optimally at pH 3–4 and 75 °C. Its optimal activity was with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), it also oxidized various lignin-related phenols. The enzyme was characterized as a multi-copper blue laccase by its substrate specificity and internal amino acid sequence. It showed a higher catalytic efficiency towards ABTS (kcat/Km = 18.5 s?1 μM?1) and 2,6-dimethoxyphenol (kcat/Km = 13.9 s?1 μM?1) than any other reported laccase. Its high stability and catalytic efficiency suggest its suitability for industrial applications: it detoxified phenolic compounds in acid-pretreated rice straw and enhanced saccharification yield.  相似文献   

4.
A new laccase from Shiraia sp.SUPER-H168 was purified by ion exchange column chromatography and gel permeation chromatography and the apparent molecular mass of this enzyme was 70.78 kDa, as determined by MALDI/TOF-MS. The optimum pH value of the purified laccase was 4, 6, 5.5 and 3 with 2,6-dimethoxyphenol (DMP), syringaldazine, guaiacol and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as substrates, respectively. The optimum temperature of the purified laccase was 50 °C using DMP, syringaldazine and guaiacol as substrates, but 60 °C for ABTS. Inhibitors and metal ions of SDS, NaN3, Ag+ and Fe3+ showed inhibition on enzyme activity of 10.22%, 7.86%, 8.13% and 67.50%, respectively. Fe2+ completely inhibited the purified laccase. The Kcat/Km values of the purified laccase toward DMP, ABTS guaiacol and syringaldazine were 3.99 × 106, 3.74 × 107, 8.01 × 104 and 2.35 × 107 mol?1 L S?1, respectively. The N-terminal amino acid sequence of the purified laccase showed 36.4% similarity to Pleurotus ostrestus. Approximately 66% of the Acid Blue 129 (100 mg L?1) was decolorized by 2.5 U of the purified laccase after a 120 min incubation at 50 °C. Acid Red 1 (20 mg L?1) and Reactive Black 5 (50 mg L?1) were decolorized by the purified laccase after the addition of Acid Blue 129 (100 mg L?1).  相似文献   

5.
《Process Biochemistry》2014,49(7):1097-1106
A novel laccase was isolated and characterized from a new selective lignin-degrading white-rot fungus Echinodontium taxodii 2538, in which a high yield of laccase was obtained. No laccase isoenzyme was detected in the synthetic liquid media. The purified laccase (designated as EtL2538) had an apparent molecular mass of 56 kDa, pI value of 3.1, and N-terminal amino acid sequence of GIGPVTDLHIVNAAV. EtL2538 showed optimum pH at 3.0 and optimum temperature at 60 °C using ABTS as the substrate. EtL2538 revealed superior thermostability, and retained over 80% of its original activity after incubation for 2 h at 50 °C. The laccase gene, etl2538, was also cloned and sequenced. This gene encoded a mature laccase protein containing 499 amino acids (aa) preceded by a signal peptide of 21 aa, and the deduced protein sequence contained four copper-binding conserved domains of typical laccase protein. EtL2538 was further used in lignin oxidation and dye decolorization. Even without the existence of redox mediators, EtL2538 could cleave the methoxyl groups and β-O-4 ether linkages in lignin from bamboo, and significantly decolorize malachite green and RBBR. These novel properties of EtL2538 may render it as a potential biocatalyst for biotechnological and environmental applications.  相似文献   

6.
《Process Biochemistry》2014,49(7):1152-1161
The primary plant cell wall is composed of cellulose, hemicellulose, lignin and protein in a stable matrix. The concomitant depolymerization of lignin by laccase and of hemicelluloses by xylanase can improve lignocellulose degradation in the production of second generation biofuels. A thermophilic variant of xylanase A (XynAG3) and the thermostable laccase (CotA), both from Bacillus subtilis, were produced in co-transformed Pichia pastoris strain GS115. Mobility changes in SDS-PAGE after Endo H digestion indicated that both enzymes were glycosylated. The maximum catalytic activity of the XynAG3Pp and the CotAPp was observed at 58 °C and 75 °C, respectively, and both enzymes presented high activity at pH 5.0. The half-life at 60 °C of XynAG3Pp and CotAPp was 150 min and 540 min, respectively. The relative levels of CotAPp and XynAG3Pp in culture broths were altered by the concentration of methanol used for induction, and CotAPp:XynAG3Pp ratios of 1:1.5 and 1:2 were evaluated against milled sugar-cane bagasse. The highest activity was observed at a 1:2 ratio of CotAPp:XynAG3Pp, and was 44% higher as compared to the sum of the activities of the individual enzymes in the same assay conditions. These results demonstrate the synergistic action between an endoxylanase and a laccase against the natural lignocellulosic substrate.  相似文献   

7.
Laccase from Trametes versicolor was immobilized on Amberlite IR-120 H beads. Maximum immobilization obtained was 78.7% at pH = 4.5 and temperature T = 45 °C. Kinetic parameters, Km and Vmax values, were determined respectively as 0.051 mM and 2.77 × 10?2 mM/s for free and 4.70 mM and 5.27 × 10?3 mM/s for immobilized laccase. The Amberlite–laccase system showed a 30% residual activity after 7 cycles. On the other hand, the loss of activity for free laccase after 7 days of storage at 4 °C was 18.5% in comparison to Amberlite–laccase system with a loss of 1.4%, during the same period. Improved operational, thermal and storage stabilities of the immobilized laccase were obtained compared to the free counterpart. Therefore, the use of low-cost matrices, like Amberlite for enzyme immobilization represents a promising product for enzymatic industrial applications.  相似文献   

8.
Cytochrome ba3 (ba3) of Thermus thermophilus (T. thermophilus) is a member of the heme–copper oxidase family, which has a binuclear catalytic center comprised of a heme (heme a3) and a copper (CuB). The heme–copper oxidases generally catalyze the four electron reduction of molecular oxygen in a sequence involving several intermediates. We have investigated the reaction of the fully reduced ba3 with O2 using stopped-flow techniques. Transient visible absorption spectra indicated that a fraction of the enzyme decayed to the oxidized state within the dead time (~ 1 ms) of the stopped-flow instrument, while the remaining amount was in a reduced state that decayed slowly (k = 400 s? 1) to the oxidized state without accumulation of detectable intermediates. Furthermore, no accumulation of intermediate species at 1 ms was detected in time resolved resonance Raman measurements of the reaction. These findings suggest that O2 binds rapidly to heme a3 in one fraction of the enzyme and progresses to the oxidized state. In the other fraction of the enzyme, O2 binds transiently to a trap, likely CuB, prior to its migration to heme a3 for the oxidative reaction, highlighting the critical role of CuB in regulating the oxygen reaction kinetics in the oxidase superfamily. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

9.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

10.
《BBA》2006,1757(9-10):1122-1132
The PM  F transition of the catalytic cycle of cytochrome c oxidase from bovine heart was investigated using single-electron photoreduction and monitoring the subsequent events using spectroscopic and electometric techniques. The PM state of the oxidase was generated by exposing the oxidized enzyme to CO plus O2. Photoreduction results in rapid electron transfer from heme a to oxoferryl heme a3 with a time constant of about 0.3 ms, as indicated by transients at 605 nm and 580 nm. This rate is ∼ 5-fold more rapid than the rate of electron transfer from heme a to heme a3 in the F  O transition, but is significantly slower than formation of the F state from the PR intermediate in the reaction of the fully reduced enzyme with O2 to form state F (70–90 μs). The ∼ 0.3 ms PM  F transition is coincident with a rapid photonic phase of transmembrane voltage generation, but a significant part of the voltage associated with the PM  F transition is generated much later, with a time constant of 1.3 ms. In addition, the PM  F transition of the R. sphaeroides oxidase was also measured and also was shown to have two phases of electrogenic proton transfer, with τ values of 0.18 and 0.85 ms.  相似文献   

11.
In this work, a laccase producer, Ganoderma lucidum, was separated and identified according to its morphological characteristics and phylogenetic data. A 4000 U/l and 8500 U/l of laccase activity was obtained in 500 ml flask by submerged culture and biomembrane-surface liquid culture (BSLC), respectively. Furthermore, the novel biomembrane-surface liquid co-culture (BSLCc) was developed by adding Saccharomyces cerevisiae to reactor in order to shorten the fermentation period and improve laccase production. Laccase activity obtained by BSLCc, 23 000 U/l, is 5.8 and 2.7 times of that obtained by submerged culture and BSLC, respectively. In addition, laccase production by BSLCc was successfully scaled-up to 100 l reactor, and 38 000 U/l of laccase activity was obtained on day 8. The mechanism of overproducing laccase by BSLCc was investigated by metabolism pathway analysis of glucose. The results show glucose limitation in fermentation broth induces the secretion of laccase. The addition of S. cerevisiae, on one hand, leads to an earlier occurrence of glucose limitation state, and thus shortens the fermentation time; on the other hand, it also results in the appearance of a series of metabolites of the yeast including organic acids, ethanol, glycerol and so forth in fermentation broth, and both polyacrylamide gel electrophoresis analysis and enzyme activity detection of laccase show that these metabolites contribute to the improvement of laccase activity.  相似文献   

12.
A putative laccase gene was cloned from Shigella dysenteriae W202 and expressed in Escherichia coli as a soluble fusion protein with high yield. The purified product (Wlac) was characterized as the CueO-like laccase from E. coli, a monomer of molecular mass 55 kDa, with a maximum activity of 24.4 U/mg (Km = 0.086) and a pH optimum of 2.5, in a standard assay using ABTS (2,2′-azino-di(3-ethyl-benzthiazoline-6-sulfonate) as the substrate. Activity was stable at 0–25 °C but inhibited above 40 °C. Purified Wlac was completely inhibited by 200 mM EDTA and partially by 32 mM SDS, 50 mM NaN3 and 60 mM thioglycolic acid. Activity was stimulated by Cu2+; other metal ions had only slight or negative effects. Two mutated variants, WlacS and WlacD, were obtained by substituting Glu 106 with Phe 106, and adding a deletion of an α-helix domain (from Leu 351 to Gly 378). WlacS had a 2.2-fold (52.9 U/mg) and WlacD a 3.5-fold (85.1 U/mg) higher enzyme activity than the wild-type laccase and WlacD showed greater thermostability at higher temperatures. Sce VMA intein-associated fusion proteins maintained ~80% of total enzyme activity. Thus, deletion and site-directed mutagenesis of laccases are capable of promoting both enzymatic activity and thermostability.  相似文献   

13.
《Process Biochemistry》2014,49(10):1647-1655
A yellow laccase from the culture filtrate of Trametes hirsuta MTCC-1171 has been purified. The purification methods involved concentration of the culture filtrate by ammonium sulphate precipitation and an anion exchange chromatography on diethylaminoethyl cellulose. The sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 55.0 kDa. Using 2,6-dimethoxyphenol, 2,2′[azino-bis-(3-ethylbonzthiazoline-6-sulphonic acid) diammonium salt] and 3,5-dimethoxy-4-hydroxybenzaldehyde azine as the substrates, the Km, kcat and kcat/Km values of the laccase were found to be 420 μM, 13.04 s−1, 3.11 × 104 M−1 s−1, 225 μM, 13.03 s−1, 1.3 × 105 M−1 s−1 and 100 μM, 13.04 s−1, 5.8 × 104 M−1 s−1, respectively. The pH and temperature optima were 4.5 and 60 °C, respectively while pH and temperature stabilities were pH 4.5 and 50 °C. The activation energy for thermal denaturation of the enzyme was 18.6 kJ/mol/K. The purified laccase has yellow colour and does not show absorption band around 610 nm like blue laccases. The purified laccase transforms toluene, 3-nitrotoluene, 4-nitrotoluene, 3-chlorotoluene, 4-chlorotoluene and 3,4-dimethoxytoluene to benzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde, 3-chlorobenzaldehyde, 4-chlorobenzaldehyde and 3,4-dimethoxybenzaldehyde in the absence of mediator molecules in high yields.  相似文献   

14.
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilized covalently on the mesostructured siliceous cellular foams (MCFs) functionalised using various organosilanes with amine and glycidyl groups. The experiments indicated that laccase bound via glutaraldehyde to MCFs modified using 2-aminoethyl-3-aminopropyltrimethoxysilane remains very active. In the best biocatalyst activity was about 42,700 U mL?1 carrier (66,800 U mg?1 bound protein), and hence significantly higher than ever reported before. Optimisation of the immobilization procedure with respect to protein concentration, pH of coupling mixture and the enzyme purity afforded the biocatalyst with activity of about 90,980 U mL?1. For the best preparation, thermal- and pH-stability, and activity profiles were determined. Experiments carried out in a batch reactor showed that kcat/Km for immobilized enzyme (0.88 min?1 μM?1) was acceptable lower than the value obtained for the native enzyme (2.19 min?1 μM?1). Finally, potentials of the catalysts were tested in the decolourisation of indigo carmine without redox-mediators. Seven consecutive runs with the catalysts separated by microfiltration proved that adsorption of the dye onto the carrier and enzymatic oxidation contribute to the efficient decolourisation without loss of immobilized enzyme activity.  相似文献   

15.
To enhance laccase yield, the laccase gene from Bacillus vallismortis fmb-103 was cloned and heterologously expressed in Escherichia coli BL21 (DE3) cells. The auto-induction strategy was applied during fermentation, and the process was controlled, as follows: Cu2+ was added when the optical density at 600 nm (OD600) was 0.3, the fermentation temperature was adjusted to 16 °C when the OD600 was 0.9, and fermentation was stopped after 50 h. The yield of recombinant laccase was up to 3420 U/L, as assayed by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Recombinant laccase was purified 4.47-fold by heating for 10 min at 70 °C and dialyzing against 50–60% ammonium sulfate, retained more than 50% activity after 10 h at 70 °C, and demonstrated broad pH stability. Malachite green was efficiently degraded by recombinant laccase, especially in combination with mediators. These results provided a basis for the future application of recombinant laccase to malachite green degradation.  相似文献   

16.
《Process Biochemistry》2007,42(4):681-685
The potential application of dry biomass of a cyanobacterium Anacystis nidulans as a supplement in SSF for the production of laccase from Pleurotus ostreatus was evaluated. Experiments were carried out in solid culture using groundnut shell as a basic substrate supplemented with four independent nitrogen sources (ammonium sulphate, urea, yeast extract and dry powder of cyanobacteria). All the four supplements enhanced the enzyme yield, and yeast extract showed precedence over inorganic nitrogenous sources. However, when dry biomass of A. nidulans was used as an additive to groundnut shell (agricultural residues), it supported maximum cell growth (56.83 ± 5.56 mg/g dry substrate) and laccase production (49.21 ± 4.89 U/g dry substrate). Addition of 1 mM copper salt in the medium containing groundnut shell supplemented with yeast extract gave laccase activity of 32.64 ± 3.4 U/g dry substrate. When dry powder of cyanobacterial biomass was used as N-supplement, laccase production enhanced to 65.42 ± 6.48 U/g dry substrate. In addition to the enhancement to enzyme production inhibitory effects of high concentrations of copper was also diminished in the medium having dry cyanobacterial biomass. This study, forms the first report on the potential application of cyanobacterial biomass as an additive for production of laccase by Pleurotus ostraetus MTCC 1804 in solid state fermentation and has relevance in scale-up production of this fungal enzyme of commercial significance.  相似文献   

17.
《Process Biochemistry》2007,42(10):1429-1435
In this study, decolorization of Remazol Brillant Blue Royal (RBBR) and Drimaren Blue CL-BR (DB) was investigated using three white rot fungi named as Pleurotus ostreatus (P. ostreatus), Coriolus versicolor (C. versicolor) and Funalia trogii (F. trogii). Decolorization studies were continued for 48 h under static conditions at 30 °C and pH 5.0. The degree of pH, dry mycelium weight (DMW), dye concentration, laccase activity and protein content were analyzed; the enzyme responsible for decolorization was detected for both dyes. Maximum and minimum decolorizations were obtained by F. trogii and P. ostreatus, respectively. Both dyes at all concentrations were found to be toxic for P. ostreatus growth, whereas only DB above 60 mg/L was found to be toxic for C. versicolor growth. Maximum and minimum laccase activities were detected in decolorization media of F. trogii and P. ostreatus, respectively. Results of activity staining following SDS-PAGE showed that laccase is the only enzyme that is responsible for decolorization of DB and RBBR.  相似文献   

18.
A laccase requiring optimum temperature 60 °C, pH 4.0 for the activity and having apparent molecular weight 43,000 Da was purified from Pseudomonas desmolyticum NCIM 2112 by three steps, including heating, anion exchange, and molecular sieve chromatography. The purification fold and yield of laccase obtained through Biogel P100 were 45.75 and 19%, respectively. Staining of native gel with L-dopa showed dark brown color band indicating the presence of laccase. In relation to hydroquinone, the substrate specificity of laccase was in the following order: DAB > o-tolidine > ABTS > L-dopa. The absence of monophenolase activity in eluted fractions conformed that the purified protein is laccase. This laccase showed substrate dependent optimum pH character. Effect of inhibitor and metal ion on enzyme activity was analyzed. UV–vis analysis showed the decolorization of Direct Blue-6, Green HE4B and Red HE7B in the presence of laccase. The FTIR spectral comparison between the control dye sample and the metabolites extracted after decolorization by purified laccase have confirmed degradation of these dyes. This study contributes for the structural requirement of a dye to be degradable by P. desmolyticum laccase and is important in order to optimize potential bioremediation systems for industrial textile process water treatment.  相似文献   

19.
《Process Biochemistry》2010,45(4):507-513
The extracellular laccase produced by the ascomycete Trichoderma atroviride was purified and characterized and its ability to transform phenolic compounds was determined. The purified laccase had activity towards typical substrates of laccases including 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), dimethoxyphenol (2,6-DMP), syringaldazine and hydroquinone. The enzyme was a monomeric protein with an apparent molecular mass of 80 kDa and an isoelectric point of 3.5. The pH optima for the oxidation of ABTS and 2,6-DMP were 3 and 5, respectively, and the optimum temperature was 50 °C with 2,6-DMP. The laccase was stable at slightly acidic pH (4 and 5). It retained 80% of its activity after 4 h incubation at 40 °C. Under standard assay conditions, Km values of the enzyme were 2.5 and 1.6 mM towards ABTS and 2,6-DMP, respectively. This enzyme was able to oxidize aromatic compounds present in industrial and agricultural wastewater, as catechol and o-cresol, although the transformation of chlorinated phenols required the presence of ABTS as mediator.  相似文献   

20.
For the first time, the investigation of Indigo carmine decolorization was done using an atypical Scytalidium thermophilum laccase. Crude and purified laccases required high temperatures and slight acidic pH to achieve maximum Indigo decolorization. Kinetic parameters (Km and kcat) of the homotrimeric laccase toward Indigo carmine were determined and laccase efficacy toward repeated dye decolorization process was studied. For the first time, 5 g l−1 as initial Indigo carmine concentration were efficiently transformed up to 50% within 6 h of incubation using 0.1 U ml−1 of laccase and without presence of any mediators. In this study, we showed that the atypical laccase transformed the indigoid dye structure, confirmed by the color changing from blue to red. This intermediate (red) was a subject to an efficient microbial consortium treatment monitored by measuring the decrease in optical density and the total organic carbon removal efficiencies. Toxicological studies via micro-toxicity test showed that the released enzymatic and adapted consortium degradation products were both non-toxic while the initial product was toxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号