首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) were originally discovered as growth factors for hematopoietic stem cells (HSCs). It has been well defined that SCF and G-CSF contribute to regulation of lineage commitment for HSCs. However, little is known about whether SCF and G-CSF play roles in the determination and differentiation of neural stem cells (NSCs). Here we demonstrate the novel function of SCF and G-CSF in controlling cell cycle and cell fate determination of NSCs. We also observe that SCF and G-CSF promote neuronal differentiation and inhibit astroglial differentiation at the early stage of differentiation. In addition, our research data reveal that SCF in combination with G-CSF has a dual function in promoting cell cycle exit and directing neuronal fate commitment at the stage of NSC dividing. This coordination effect of SCF+G-CSF on cell cycle arrest and neuronal differentiation is through enhancing neurogenin 1 (Ngn1) activity. These findings extend current knowledge regarding the role of SCF and G-CSF in the regulation of neurogenesis and provide insights into the contribution of hematopoietic growth factors to brain development and remodeling.  相似文献   

2.
3.
In this study, the effect of hematopoietic cytokines, i.e., granulocyte-colony stimulating factor (G-CSF), stem cell factor (SCF), and granulocyte-macrophage-colony stimulating factor (GM-CSF), on renal function was studied in cisplatin-induced acute renal failure in mice. Treatment with G-CSF significantly ameliorated both BUN and serum creatinine increase induced by cisplatin administration with concomitant alleviation in the degree of necrotic change, enhancement in DNA synthesis, and decrease in apoptosis of renal tubular cells. There was no significant change observed among these parameters following treatment with SCF or with GM-CSF. Serum hepatocyte growth factor level was significantly lower in mice treated with cisplatin and G-CSF compared with that in those treated with cisplatin only. In conclusion, G-CSF, but not SCF or GM-CSF, acts to accelerate regeneration and prevent apoptosis of renal tubular epithelial cells and leads to reduced renal injury in cisplatin-induced acute renal failure in mice.  相似文献   

4.
The giant freshwater prawn Macrobrachium rosenbergii is one of the most important aquaculture species in Southeast Asia. In this study, in vitro culture of its hematopoietic tissue cells was achieved and characterized for use as a tool to study its pathogens that cause major farm losses. By transmission electron microscopy, the ultrastructure of the primary culture cells was similar to that of cells lining intact hematopoietic tissue lobes. Proliferating cell nuclear antigen (PCNA) (a marker for hematopoietic stem cell proliferation) was detected in some of the cultured cells by polymerase chain reaction (PCR) testing and flow cytometry. Using a specific staining method to detect phenoloxidase activity and using PCR to detect expression markers for semigranular and granular hemocytes (e.g., prophenoloxidase activating enzyme and prophenoloxidase) revealed that some of the primary cells were able to differentiate into mature hemocytes within 24 h. These results showed that some cells in the cultures were hematopoietic stem cells that could be used to study other interesting research topics (e.g. host pathogen interactions and development of an immortal hematopoietic stem cell line).  相似文献   

5.
种子细胞也是组织工程的核心研究内容,获得足够数量和质量的种子细胞是开展体外组织工程的必要基础。用于组织工程的种子细胞必须具有形成新组织结构的能力,主要来源于自体、同种异体或异种,在具体应用时各有利弊。一些成体干细胞由于不存在伦理争议以及发育分化条件相对简单等优势是重要的种子细胞,包括造血干细胞、骨髓干细胞、神经干细胞、脂肪干细胞、皮肤干细胞。人胚胎干细胞及其组织工程要真正在临床医学中得到应用,还有很长的一段路要走。其他一些细胞也可以作为组织工程种子细胞,包括内皮细胞、上皮细胞、成纤维细胞、骨细胞、成骨细胞、角质细胞、前脂肪细胞、脂肪细胞、肌腱细胞等。这些细胞已分化,分裂能力有限,但仍应用于组织工程。理想的种子细胞具有一定标准。  相似文献   

6.
7.
Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.  相似文献   

8.
Cytokines and hematopoietic stem cell mobilization   总被引:7,自引:0,他引:7  
Hematopoietic stem cell transplantation (HSCT) has become the standard of care for the treatment of many hematologic malignancies, chemotherapy sensitive relapsed acute leukemias or lymphomas, multiple myeloma; and for some non-malignant diseases such as aplastic anemia and immunodeficient states. The hematopoietic stem cell (HSC) resides in the bone marrow (BM). A number of chemokines and cytokines have been shown in vivo and in clinical trials to enhance trafficking of HSC into the peripheral blood. This process, termed stem cell mobilization, results in the collection of HSC via apheresis for both autologous and allogeneic transplantation. Enhanced understanding of HSC biology, processes involved in HSC microenvironmental interactions and the critical ligands, receptors and cellular proteases involved in HSC homing and mobilization, with an emphasis on G-CSF induced HSC mobilization, form the basis of this review. We will describe the key features and dynamic processes involved in HSC mobilization and focus on the key ligand-receptor pairs including CXCR4/SDF1, VLA4/VCAM1, CD62L/PSGL, CD44/HA, and Kit/KL. In addition we will describe food and drug administration (FDA) approved and agents currently in clinical development for enhancing HSC mobilization and transplantation outcomes.  相似文献   

9.
Stem cell capability enhanced with cytokine administration is a promising treatment for myocardial infarction. Bone marrow stem cells (BMSCs) were isolated from C57BL/6 mice (8-12 weeks old) expressing GFP and characterized with c-kit and CD34. Infarcted heart tissue fragments were placed into dishes with BMSCs and medium supplemented with G-CSF, SCF, IGF-1 or combinations thereof were given to the BMSC-infarcted myocardium in vitro model. The IGF-1-G-CSF group showed significantly higher migration (67.7% ± 2.6) of c-kit+ BMSCs towards the ischemic tissue and expressed MEF-2 (43.7% ± 1.7). Of the single treatment groups, the G-CSF group demonstrated significantly higher migration of c-kit+ BMSCs (60.5 ± 2.7) with MEF-2 expression (38.7 ± 1.4). IGF-1 complements G-CSF and was relatively more significant in its effects on BMSC migration and cardiac lineage commitment towards ischemic heart tissue.  相似文献   

10.
The replicative lifespan of normal somatic cells is restricted by the erosion of telomeres, which are protective caps at the ends of linear chromosomes. The loss of telomeres induces antiproliferative signals that eventually lead to cellular senescence. The enzyme complex telomerase can maintain telomeres, but its expression is confined to highly proliferative cells such as stem cells and tumor cells. The immense regenerative capacity of the hematopoietic system is provided by a distinct type of adult stem cell: hematopoietic stem cells (HSCs). Although blood cells have to be produced continuously throughout life, the HSC pool seems not to be spared by aging processes. Indeed, limited expression of telomerase is not sufficient to prevent telomere shortening in these cells, which is thought ultimately to limit their proliferative capacity. In this review, we discuss the relevance of telomere maintenance for the hematopoietic stem cell compartment and consider potential functions of telomerase in this context. We also present possible clinical applications of telomere manipulation in HSCs and new insights affecting the aging of the hematopoietic stem cell pool and replicative exhaustion. This work was supported by European Community Grant LSHC-CT-2004-502943 (MOL CANCER MED).  相似文献   

11.

Background

Notch signaling plays a critical role in multiple developmental programs and not surprisingly, the Notch pathway has also been implicated in the regulation of many adult stem cells, such as those in the intestine, skin, lungs, hematopoietic system, and muscle.

Scope of review

In this review, we will first describe molecular mechanisms of Notch component modulation including recent advances in this field and introduce the fundamental principles of Notch signaling controlling cell fate decisions. We will then illustrate its important and varied functions in major stem cell model systems including: Drosophila and mammalian intestinal stem cells and mammalian skin, lung, hematopoietic and muscle stem cells.

Major conclusions

The Notch receptor and its ligands are controlled by endocytic processes that regulate activation, turnover, and recycling. Glycosylation of the Notch extracellular domain has important modulatory functions on interactions with ligands and on proper receptor activity. Notch can mediate cell fate decisions including proliferation, lineage commitment, and terminal differentiation in many adult stem cell types. Certain cell fate decisions can have precise requirements for levels of Notch signaling controlled through modulatory regulation.

General significance

We describe the current state of knowledge of how the Notch receptor is controlled through its interaction with ligands and how this is regulated by associated factors. The functional consequences of Notch receptor activation on cell fate decisions are discussed. We illustrate the importance of Notch's role in cell fate decisions in adult stem cells using examples from the intestine, skin, lung, blood, and muscle. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

12.
Although stem cells are generally thought to be resistant to oxidative stress, the fact and in detail molecular mechanism are still to be clearly identified. We herein tried to understand the overall characterization of redox regulatory signaling in hematopoietic stem cells. We purified c-kit-positive hematopoietic stem/progenitor cells from the bone marrow of healthy mice, and then evaluated their redox regulatory property. Compared to the c-kit-negative matured mononuclear cells, c-kit-positive stem/progenitor cells showed lower basic levels of intracellular reactive oxygen species, faster clearance of the accumulated intracellular reactive oxygen species, and higher resistant to oxidative stress. An overall view on the gene expression profile associated with redox regulation showed to be widely differed between cell types. We confirmed that the c-kit-positive stem/progenitor cells expressed significantly higher of Nox1 and catalase, but less of lactoperoxidase than these matured mononuclear cells. Our data suggests that stem cells keep specific redox regulatory property for defensing against oxidative stress.  相似文献   

13.
14.
In a recent issue of Nature Medicine, Ryan et?al. (2010) uncover genetic modifiers of G-CSF responses by hematopoietic progenitors. The authors document a negative role of EGFR signaling and, provided an analogous pathway functions in humans, propose a potential new angle to promote clinical blood stem cell mobilization.  相似文献   

15.

Background

Hematopoietic stem/progenitor cells (HSPCs) maintain the hematopoietic system by balancing their self-renewal and differentiation events. Hematopoietic stem cells also migrate to various sites and interact with their specific microenvironment to maintain the integrity of the system. Rho GTPases have been found to control the migration of hematopoietic cells and other cell types. Although the role of RAC1, RAC2 and CDC42 has been studied, the role of RHOA in human hematopoietic stem cells is unclear.

Results

By utilizing constitutively active and dominant negative RHOA, we show that RHOA negatively regulates both in vitro and in vivo migration and dominant negative RHOA significantly increased the migration potential of human HSC/HPCs. Active RHOA expression favors the retention of hematopoietic stem/progenitor cells in the niche rather than migration and was found to lock the cells in the G0 cell cycle phase thereby affecting their long-term self-renewal potential.

Conclusion

The current study demonstrates that down-regulation of RHOA might be used to facilitate the migration and homing of hematopoietic stem cells without affecting their long-term repopulating ability. This might be of interest especially for increasing the homing of ex vivo expanded HSPC.  相似文献   

16.
Stem cell therapy is not a new field, as indicated by the success of hematopoietic stem cell reconstitution for various hematological malignancies and immune-mediated disorders. In the case of tissue repair, the major issue is whether stem cells should be implanted, regardless of the type and degree of injury. Mesenchymal stem cells have thus far shown evidence of safety, based on numerous clinical trials, particularly for immune-mediated disorders. The premise behind these trials is to regulate the stimulatory immune responses negatively. To apply stem cells for other disorders, such as acute injuries caused by insults from surgical trauma and myocardial infarction, would require other scientific considerations. This does not imply that such injuries are not accompanied by immune responses. Indeed, acute injuries could accompany infiltration of immune cells to the sites of injuries. The implantation of stem cells within a milieu of inflammation will establish an immediate crosstalk among the stem cells, microenvironmental molecules, and resident and infiltrating immune cells. The responses at the microenvironment of tissue injury could affect distant and nearby organs. This editorial argues that the microenvironment of any tissue injury is a key consideration for effective stem cell therapy.  相似文献   

17.
BMP signaling and stem cell regulation   总被引:7,自引:0,他引:7  
Stem cells play an essential role in cellular specialization and pattern formation during embryogenesis and in tissue regeneration in adults. This is mainly due to a stem cell's ability to replenish itself (self-renewal) and, at the same time, produce differentiated progeny. Realization of these special stem cell features has changed the prospective of the field. However, regulation of stem cell self-renewal and maintenance of its potentiality require a complicated regulatory network of both extracellular cues and intrinsic programs. Understanding how signaling regulates stem cell behavior will shed light on the molecular mechanisms underlying stem cell self-renewal. In this review, we focus on comparing the progress of recent research regarding the roles of the BMP signaling pathway in different stem cell systems, including embryonic stem cells, germline stem cells, hematopoietic stem cells, and intestinal stem cells. We hope this comparison, together with a brief look at other signaling pathways, will bring a more balanced view of BMP signaling in regulation of stem cell properties, and further point to a general principle that self-renewal of stem cells may require a combination of maintenance of proliferation potential, inhibition of apoptosis, and blocking of differentiation.  相似文献   

18.
E Platzer  S Simon  J R Kalden 《Blood cells》1988,14(2-3):463-469
Human granulocyte colony stimulating factor (G-CSF) was previously shown to support the survival and proliferation of early myeloid progenitors (pre-CFU) that are capable of generating more mature CFU-GM progenitor cells. To evaluate the scope of action of G-CSF in the hierarchy of hematopoietic stem cells, we studied the effects of recombinant G-CSF (rhG-CSF) on long-term cultures of normal human bone marrow cells (LTBMC). We found that rhG-CSF predominantly influenced initial cell proliferation and expansion of CFU-GM progenitor cells in LTBMC before establishment of a confluent adherent layer. In rhG-CSF-treated LTBMC, the stromal cell layer was associated with a higher proliferative capacity and progenitor cell content as compared to control cultures. This effect was pronounced early after layer confluence and was gradually lost with culture time. rhG-CSF did not alter the duration of the productive phase of LTBMC, suggesting that it may not be active on the hematopoietic stem cells responsible for LTBMC propagation. Alternatively, stromal cells may exert tight regulatory control over progenitor cells, even in the presence of rhG-CSF.  相似文献   

19.
目的观察小鼠心肌梗死后骨髓造血干细胞在心脏内的分化及细胞因子的影响。方法C57/BL6小鼠60只分为骨髓动员组和对照组,先后行脾切除、骨髓移植(骨髓供体为增强绿色荧光蛋白转基因小鼠)、骨髓动员及建立心肌梗死模型。心肌梗死后3周将小鼠心脏取出并切片行组织学及激光共聚焦显微镜免疫荧光检查。结果骨髓动员可以增加EGFP阳性细胞在心脏中梗死区和边缘区的定植,但绝大多数EGFP阳性细胞都同时表达CD45。仅发现有极少数骨髓来源的心肌细胞、成纤维细胞及血管内皮细胞,且与骨髓动员无相关性。结论骨髓动员能够明显促进骨髓来源细胞定植入小鼠心脏的梗死区;极少数骨髓造血干细胞可以分化为心肌细胞,其数量远不足以修复梗死心肌及改善心功能;骨髓造血干细胞不参与梗死区疤痕形成的病理过程。  相似文献   

20.
造血干细胞分化生成巨核细胞是一个十分复杂的过程,包括造血干细胞动员及其向巨核系祖细胞分化,巨核系祖细胞增殖、分化生成未成熟巨核细胞,巨核细胞的成熟和血小板释放等过程。研究发现,造血干细胞动员及其向各系细胞分化的大部分过程都在一种称为"龛"的结构中进行,多种龛内信号分子参与了造血干细胞的动员和分化调控。该文对造血干细胞龛内参与造血干细胞动员和分化生成巨核细胞的几种重要细胞因子及其调控作用进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号