首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct observation of the folding of a single polypeptide chain can provide important information about the thermodynamic states populated along its folding pathway. In this study, we present a lock-in force-spectroscopy technique that improves resolution of atomic-force microscopy force spectroscopy to 400 fN. Using this technique we show that immunoglobulin domain 4 from Dictyostelium discoideum filamin (ddFLN4) refolds against forces of ∼4 pN. Our data show folding of this domain proceeds directly from an extended state and no thermodynamically distinct collapsed state of the polypeptide before folding is populated. Folding of ddFLN4 under load proceeds via an intermediate state. Three-state folding allows ddFLN4 to fold against significantly larger forces than would be possible for a mere two-state folder. We present a general model for protein folding kinetics under load that can predict refolding forces based on chain-length and zero force refolding rate.  相似文献   

2.
Domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active center for the protein folding activity of the ribosome (PFAR). Using in vitro transcribed domain V rRNAs from Escherichia coli and Saccharomyces cerevisiae as the folding modulators and human carbonic anhydrase as a model protein, we demonstrate that PFAR is conserved from prokaryotes to eukaryotes. It was shown previously that 6-aminophenanthridine (6AP), an antiprion compound, inhibits PFAR. Here, using UV cross-linking followed by primer extension, we show that the protein substrates and 6AP interact with a common set of nucleotides on domain V of 23S rRNA. Mutations at the interaction sites decreased PFAR and resulted in loss or change of the binding pattern for both the protein substrates and 6AP. Moreover, kinetic analysis of human carbonic anhydrase refolding showed that 6AP decreased the yield of the refolded protein but did not affect the rate of refolding. Thus, we conclude that 6AP competitively occludes the protein substrates from binding to rRNA and thereby inhibits PFAR. Finally, we propose a scheme clarifying the mechanism by which 6AP inhibits PFAR.  相似文献   

3.
Reis SD  Pang Y  Vishnu N  Voisset C  Galons H  Blondel M  Sanyal S 《Biochimie》2011,93(6):1047-1054
The ribosome, the protein synthesis machinery of the cell, has also been implicated in protein folding. This activity resides within the domain V of the main RNA component of the large subunit of the ribosome. It has been shown that two antiprion drugs 6-aminophenanthridine (6AP) and Guanabenz (GA) bind to the ribosomal RNA and inhibit specifically the protein folding activity of the ribosome. Here, we have characterized with biochemical experiments, the mode of inhibition of these two drugs using ribosomes or ribosomal components active in protein folding (referred to as ’ribosomal folding modulators’ or RFMs) from both bacteria Escherichia coli and yeast Saccharomyces cerevisiae, and human carbonic anhydrase (HCA) as a sample protein. Our results indicate that 6AP and GA inhibit the protein folding activity of the ribosome by competition with the unfolded protein for binding to the ribosome. As a result, the yield of the refolded protein decreases, but the rate of its refolding remains unaffected. Further, 6AP- and GA mediated inhibition of RFM mediated refolding can be reversed by the addition of RFMs in excess. We also demonstrate with delayed addition of the ribosome and the antiprion drugs that there is a short time-span in the range of seconds within which the ribosome interacts with the unfolded protein. Thus we conclude that the protein folding activity of the ribosome is conserved from bacteria to eukaryotes and most likely the substrate for RFMs is an early refolding state of the target protein.  相似文献   

4.
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.  相似文献   

5.
Wang P  Klimov DK 《Proteins》2008,70(3):925-937
We use lattice protein models and Monte Carlo simulations to study cotranslational folding of small single domain proteins. We show that the assembly of native structure begins during late extrusion stages, but final formation of native state occurs during de novo folding, when all residues are extruded. There are three main results in our study. First, for the sequences displaying two-state refolding mechanism de novo cotranslational folding pathway differs from that sampled in in vitro refolding. The change in folding pathways is due to partial assembly of native interactions during extrusion that results in different starting conditions for in vitro refolding and for de novo cotranslational folding. For small single domain proteins cotranslational folding is slower than in vitro refolding, but is generally fast enough to be completed before the release from a ribosome. Second, we found that until final stages of biosynthesis cotranslational folding is essentially equilibrium. This observation is explained by low stability of structured states for partially extruded chains. Finally, our data suggest that the proteins, which refold in vitro slowly via intermediates, complete their de novo folding after the release from a ribosome. Comparison of our lattice cotranslational simulations with recent experimental and computational studies is discussed.  相似文献   

6.
Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes.  相似文献   

7.
The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.  相似文献   

8.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

9.
The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.  相似文献   

10.
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.  相似文献   

11.
Expression of recombinant proteins in Escherichia coli often leads to formation of inclusion bodies (IB). If a recombinant protein contains one or more disulfide bonds, protein refolding and thiol oxidation reactions are required to recover its biological activity. Previous studies have demonstrated that molecular chaperones and foldases assist with the in vitro protein refolding. However, their use has been limited by the stoichiometric amount required for the refolding reaction. In search of alternatives to facilitate the use of these folding biocatalysts in this study, DsbA, DsbC, and the apical domain of GroEL (AD) were fused to the carbohydrate-binding module CBDCex of Cellulomonas fimi. The recombinant proteins were purified and immobilized in cellulose and used to assist the oxidative refolding of denatured and reduced lysozyme. The assisted refolding yields obtained with immobilized folding biocatalysts were at least twice of those obtained in the spontaneous refolding, suggesting that the AD, DsbA, and DsbC immobilized in cellulose might be useful for the oxidative refolding of recombinant proteins that are expressed as inclusion bodies. In addition, the spontaneous or assisted refolding kinetics data fitted well (r2 > 0.9) to a previously reported lysozyme refolding model. The estimated refolding (k N) and aggregation (k A) constants were consistent with the hypothesis that foldases assisted the oxidative refolding of lysozyme by decreasing protein aggregation rather than increasing the refolding rate.  相似文献   

12.
The refolding kinetics of ribonuclease S have been measured by tyrosine absorbance, by tyrosine fluorescence emission, and by rapid binding of the specific inhibitor 2′CMP 2 to folded RNAase S. The S-protein is first unfolded at pH 1.7 and then either mixed with S-peptide as refolding is initiated by a stopped-flow pH jump to pH 6.8, or the same results are obtained if S-protein and S-peptide are present together before refolding is initiated. The refolding kinetics of RNAase S have been measured as a function of temperature (10 to 40 °C) and of protein concentration (10 to 120 μm). The results are compared to the folding kinetics of S-protein alone and to earlier studies of RNAase A. A thermal folding transition of S-protein has been found below 30 °C at pH 1.7; its effects on the refolding kinetics are described in the following paper (Labhardt &; Baldwin, 1979).In this paper we characterize the refolding kinetics of unfolded S-protein, as it is found above 30 °C at pH 1.7, together with the kinetics of combination between S-peptide and S-protein during folding at pH 6.8. Two classes of unfolded S-protein molecules are found, fast-folding and slow-folding molecules, in a 20: 80 ratio. This is the same result as that found earlier for RNAase A; it is expected if the slow-folding molecules are produced by the slow cis-trans isomerization of proline residues after unfolding, since S-protein contains all four proline residues of RNAase A.The refolding kinetics of the fast-folding molecules show clearly that combination between S-peptide and S-protein occurs before folding of S-protein is complete. If combination occurred only after complete folding, then the kinetics of formation of RNAase S should be rather slow (5 s and 100 s at 30 °C) and nearly independent of protein concentration, as shown by separate measurements of the folding kinetics of S-protein, and of the combination between S-peptide and folded S-protein. The observed folding kinetics are faster than predicted by this model and also the folding rate increases strongly with protein concentration (apparent 1.6 order kinetics). The fact that RNAase S is formed more rapidly than S-protein alone is sufficient by itself to show that combination with S-peptide precedes complete folding of S-protein. Computer simulation of a simple, parallel-pathway scheme is able to reproduce the folding kinetics of the fast-folding molecules. All three probes give the same folding kinetics.These results exclude the model for protein folding in which the rate-limiting step is an initial diffusion of the polypeptide chain into a restricted range of three-dimensional configurations (“nueleation”) followed by rapid folding (“propagation”). If this model were valid, one would expect comparable rates of folding for RNAase A and for S-protein and one would also expect to find no populated folding intermediates, so that combination between S-peptide and S-protein should occur after folding is complete. Instead, RNAase A folds 60 times more rapidly than S-protein and also combination with S-peptide occurs before folding of S-protein is complete. The results demonstrate that the folding rate of S-protein increases after the formation, or stabilization, of an intermediate which results from combination with S-peptide. They support a sequential model for protein folding in which the rates of successive steps in folding depend on the stabilities of preceding intermediates.The refolding kinetics of the slow-folding molecules are complex. Two results demonstrate the presence of folding intermediates: (1) the three probes show different kinetic progress curves, and (2) the folding kinetics are concentration-dependent, in contrast to the results expected if complete folding of S-protein precedes combination with S-peptide. A faster phase of the slow-refolding reaction is detected both by tyrosine absorbance and fluorescence emission but not by 2′CMP binding, indicating that native RNAase S is not formed in this phase. Comparison of the kinetic progress curves measured by different probes is made with the use of the kinetic ratio test, which is defined here.  相似文献   

13.
The role of the 50S particle of Escherichia coli ribosome and its 23S rRNA in the refolding and subunit association of dimeric porcine heart cytoplasmic malate dehydrogenase (s-MDH) has been investigated. The self-reconstitution of s-MDH is governed by two parallel pathways representing the folding of the inactive monomeric and the dimeric intermediates. However, in the presence of these folding modulators, only one first order kinetics was observed. To understand whether this involved the folding of the monomers or the dimers, subunit association of s-MDH was studied using fluorescein-5-isothiocyanate–rhodamine-isothiocyanate (FITC–RITC) fluorescence energy transfer and chemical cross-linking with gluteraldehyde. The observation suggests that during refolding the interaction of the unstructured monomers of s-MDH with these ribosomal folding modulators leads to very fast formation of structured monomers that immediately dimerise. These inactive dimers then fold to the native ones, which is the rate limiting step in 23S or 50S assisted refolding of s-MDH. Furthermore, the sequential action of the two fragments of domain V of 23S rRNA has been investigated in order to elucidate the mechanism. The central loop of domain V of 23S rRNA (RNA1) traps the monomeric intermediates, and when they are released by the upper stem–loop region of the domain V of 23S rRNA (RNA2) they are already structured enough to form dimeric intermediates which are directed towards the proper folding pathway.  相似文献   

14.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

15.
The SH3 domain has often been used as a model for protein folding due to its typical two-state behaviour. However, recent experimental data at low pH as well as molecular dynamic simulations have indicated that the folding process of SH3 probably is more complicated, and may involve intermediate states. Using both kinetic and equilibrium measurements we have obtained evidence that under native-like conditions the folding of the spectrin SH3 domain does not follow a classic two-state behaviour. The curvature we observed in the Chevron plots is a strong indication of a non-linear activation energy relationship due to the presence of high-energy intermediates. In addition, circular dichroism measurements indicated that refolding after thermal denaturation did not follow the same pattern as thermal unfolding but rather implied less cooperativity and that the refolding transition increased with increasing protein concentration. Further, NMR experiments indicated that upon refolding the SH3 domain gave rise to more than one conformation. Therefore, our results suggest that the folding of the SH3 domain of αII-spectrin does not follow a classical two-state process under high-salt conditions and neutral pH. Heterogeneous folding pathways, which can include folding intermediates as well as misfolded intermediates, might give a more reasonable insight into the folding behaviour of the αII-spectrin SH3 domain.  相似文献   

16.
CHIP is a cochaperone of Hsp70 that inhibits Hsp70-dependent refolding in vitro. However, the effect of altered expression of CHIP on the fate of unfolded proteins in mammalian cells has not been determined. Surprisingly, we found that overexpression of CHIP in fibroblasts increased the refolding of proteins after thermal denaturation. This effect was insensitive to geldanamycin, an Hsp90 inhibitor, and required the tetratricopeptide repeat motifs but not the U-box domain of CHIP. Inhibition of Hsp70 chaperone activity abolished the effects of CHIP on protein folding, indicating that the CHIP-mediated events were Hsp70 dependent. Hsp40 competitively inhibited the CHIP-dependent refolding, which is consistent with in vitro data indicating that these cofactors act on Hsp70 in the ATP-bound state and have opposing effects on Hsp70 ATPase activity. Consistent with these observations, CHIP overexpression did not alter protein folding in the setting of ATP depletion, when Hsp70 is in the ADP-bound state. Concomitant with its effects on refolding heat-denatured substrates, CHIP increased the fraction of nascent chains coimmunoprecipitating with Hsc70, but only when sufficient ATP was present to allow Hsp70 to cycle rapidly. Our data suggest that, consistent with in vitro studies, CHIP attenuates the Hsp70 cycle in living cells. The impact of this effect on the fate of unfolded proteins in cells, however, is different from what might be expected from the in vitro data. Rather than resulting in inhibited refolding, CHIP increases the folding capacity of Hsp70 in eukaryotic cells.  相似文献   

17.
The 62 kDa protein firefly luciferase folds very rapidly upon translation on eukaryotic ribosomes. In contrast, the chaperone-mediated refolding of chemically denatured luciferase occurs with significantly slower kinetics. Here we investigate the structural basis for this difference in folding kinetics. We find that an N-terminal domain of luciferase (residues 1-190) folds co-translationally, followed by rapid formation of native protein upon release of the full-length polypeptide from the ribosome. In contrast sequential domain formation is not observed during in vitro refolding. Discrete unfolding steps, corresponding to domain unfolding, are however observed when the native protein is exposed to increasing concentrations of denaturant. Thus, the co-translational folding reaction bears more similarities to the unfolding reaction than to refolding from denaturant. We propose that co-translational domain formation avoids intramolecular misfolding and may be critical in the folding of multidomain proteins.  相似文献   

18.
The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance.  相似文献   

19.
We investigate the effect of macromolecular crowding on protein folding, using purely repulsive crowding particles and a self-organizing polymer model of protein folding. We find that the variation in folding stability with crowder size for typical α-, β-, and α/β-proteins is well described by an adaptation of the scaled particle theory. The native state, the transition state, and the unfolded protein are treated as effective hard spheres, with the folded and transition state radii independent of the size and concentration of the crowders. Remarkably, we find that, as the effective unfolded state radius is very weakly dependent on the crowder concentration, it can also be approximated by a single size. The same model predicts the effect of crowding on the folding barrier and therefore refolding rates with no adjustable parameters. A simple extension of the scaled-particle theory model, assuming additivity, can also describe the behavior of mixtures of crowding particles.  相似文献   

20.
The equilibria and kinetics of urea-induced unfolding and refolding of the alpha subunit of tryptophan synthase of E. coli have been examined for their dependences on viscosity, pH, and temperature in order to investigate the properties of one of the rate-limiting steps, domain association. A viscosity enhancer, 0.58 M sucrose, was found to slow unfolding and accelerate refolding. This apparently anomalous result was shown to be due to the stabilizing effect of sucrose on the folding reaction. After accounting for this stabilization effect by using linear free-energy plots, the unfolding and refolding kinetics were found to have a viscosity dependence. A decrease in pH was found to stabilize the domain association reaction by increasing the refolding rate and decreasing the unfolding rate. This effect was accounted for by protonation of a single residue with a pK value of 8.8 in the native state and 7.1 in the intermediate, in which the two domains are not yet associated. The activation energy of unfolding is 4.8 kcal/mol, close to the diffusion limit. The negative activation entropy of unfolding, -47 cal/deg-mol, which controls this reaction, may result from ordering of solvent about the newly exposed domain interface of the transition state. These results may provide information on the types of noncovalent interactions involved in domain association and improve the ability to interpret the folding of mutants with single amino-acid substitutions at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号