首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The surface of spermatozoa plays a critical role in many stages involved in fertilisation. The plasma membrane undergoes important alterations in the male and female reproductive tract, which result in the ability of spermatozoa to fertilise eggs. One of these membrane modifications is sperm capacitation, a process by which sperm interacts with the zona pellucida receptors leading to the acrosome reaction. It has been proposed that the freezing process induces capacitation-like changes to spermatozoa, and that this premature capacitation could explain the reduction in longevity and fertilising capacity of cryopreserved mammalian spermatozoa. Our research focused on the relationship between membrane alterations occurring throughout freezing-thawing and the processes of capacitation and acrosome reaction. We used centrifugal countercurrent distribution (CCCD) analysis to compare the partition behaviour of ram spermatozoa that was either subjected to cold-shock or frozen-thawed with capacitated and acrosome reacted samples. In addition, the effect of the induced acrosome reaction on membrane integrity of ram spermatozoa was studied using biochemical markers and electron microscopy scanning. The CCCD analysis revealed important similarities between the surface characteristics of capacitated and cold-shocked sperm as well as between acrosome-reacted and frozen-thawed sperm. Cold-shocked and capacitated sperm showed an increased cell affinity for the lower dextran-rich phase as well as a decreased heterogeneity. Likewise, the induction of the acrosome reaction resulted in a loss of viability and an important decrease in cell surface heterogeneity compared to the untreated-control sample. Similar surface changes were found when semen samples were frozen with either Fiser or milk-yolk extender. These results confirm those obtained for membrane integrity by fluorescence markers. Thus, the high cell viability value found in the control sample (74.5%) was greatly decreased after cold-shock (22.2%), cryopreservation (26.38% Fiser medium, 24.8% milk-yolk medium) and acrosome reaction (6.6%), although it was preserved after inducing capacitation (46.7%). The study using electron microscopy scanning revealed dramatic structural alterations provoked by the induction of the acrosome reaction.  相似文献   

2.
(S)-3-Cyano-5-methylhexanoic acid ((S)-CMHA) is the key chiral intermediate of pregabalin. In this paper, an aqueous two-phase system (ATPS) was developed to extract (S)-CMHA from nitrilase-catalyzed bioconversion broth. Inorganic salts and hydrophilic solvents were screened to form ATPS, among which an acetone/ammonium sulfate ATPS was investigated in detail, including phase diagram, effect of phase composition and stability of (S)-CMHA. The maximum product recovery of 99.15% was obtained by an optimized ATPS system composed of 15% (w/w) ammonium sulfate and 35% (w/w) acetone with the removal of 99% cells and 86.27% proteins. The total (S)-CMHA yield reached 92.11% after back-extraction. The recycling use of ammonium sulfate was investigated, and 93.10% of salt in the salt-rich phase was recovered with the addition of methanol. The results demonstrated the efficiency of the two-step extraction process for separation of (S)-CMHA.  相似文献   

3.
A modified Flory–Huggins equation accounting for the solvation of polymer molecules by water molecules was used to model the phase behavior of aqueous two-phase systems (ATPS) formed by poly(ethylene glycol) (PEG) and dextran. The parameters of the equation were obtained by fitting experimental equilibrium data either accounting for or disregarding dextran polidispersity. The modified equation was subsequently applied to calculate partition coefficients of biomolecules in these systems. It was found that accounting for polidispersity did not affect significantly the calculated phase equilibrium, but increased the agreement of calculated partition coefficients with experimental data. Further improvement was obtained by using a size dependent interaction parameter for dextran pseudo-components.  相似文献   

4.
Statistical models concerning partitioning of pectinase in polyethylene glycol 1000/Na2SO4 aqueous two-phase system were established with response surface methodology. Concentrations of polyethylene glycol 1000 and Na2SO4 were selected as independent variables to evaluate their impact on parameters of partitioning in aqueous two-phase system—the partition coefficient of pectinase, purification factor and pectinase yield. An experimental space where over 2.5-fold purification was achieved, followed by over 90% yield of pectinase. The established models showed good prediction of partitioning parameters.  相似文献   

5.
The theoretical framework based only on the excluded volume forces is not enough to explain the bovine serum albumin partitioning behaviour in aqueous biphasic systems. The goal of this work is to look at the phase separation via the polymer effect on the water structure. Our findings suggest that polyethyleneglycol 600-protein interaction is conducted by van der Waals forces between the hydrophobic surfaces from PEG and protein molecules, which implies the rupture of hydrogen bonds from the structured water in their neighbours. Therefore, the protein will concentrate in the most water-structured phase (polyethyleneglycol) in order to reach the minimal free energy condition. When polyethyleneglycol molecular weight increases, its exclusion from protein surface prevails, thus pushing the bovine serum albumin to the bottom phase.  相似文献   

6.
Penicillin acylase purification from an Escherichia coli crude extract using PEG 3350–sodium citrate aqueous two-phase systems (ATPS) was optimized. An experimental design was used to evaluate the influence of PEG, sodium citrate and sodium chloride on the purification parameters. A central composite design was defined centred on the previously found conditions for highest purification from an osmotic shock extract. Mathematical models for the partition coefficient of protein and enzyme, balance of protein and enzyme, yield and purification were calculated and statistically validated. Analysis of the contours of constant response as a function of PEG and sodium citrate concentrations for three different concentrations of NaCl revealed different effects of the three factors on the studied parameters. A maximum purification factor of 6.5 was predicted for PEG 3350, sodium citrate and NaCl concentrations of 15.1, 11.0 and 8.52% respectively. However, under these conditions the predicted yield was 61%. A better compromise between these two parameters can be found by superimposing the contour plots of the purification factor and yield for 10.3% NaCl. A region in the experimental space can be defined where the purification factor is always higher than 5.5 with yields exceeding 80%.  相似文献   

7.
The solution behaviour of selected proteins has been studied under conditions promoting precipitation, binding to mildly hydrophobic adsorbents or partition. Solvophobic theory may be used to describe these forms of protein partition. The tendency of a protein to partition therein is dependent upon surface properties of the protein solute mediated by the concentration and nature of added salts. As applied to partitioning in poly(ethylene glycol) (PEG)-salt systems this implies that linear (Brönsted) relationships apply only to proteins partitioned close to the critical point. At longer tie-line lengths protein partitioning is increasingly influenced by salting-out forces. This is confirmed by the observed behaviour of the proteins. The point at which this behaviour changes has been unambiguously defined enabling the direct comparison of phase transition of proteins during partition in all systems. The results obtained show that phase transition during adsorption and partition occur at similar concentrations of salt. This is less than that required to promote precipitation. It appears, from these limited studies, that top-phase preferring proteins are partitioned at salt concentrations above those required to cause adsorption. Proteins preferring the lower phase are partitioned at salt concentrations close to or below those required for adsorption. This raises questions regarding the solvated molecular form of the partitioned proteins and the definition of the partition coefficient.  相似文献   

8.
High concentrations of Escherichia coli disintegrate move the binodial of a poly(ethylene glycol) (PEG) 4000/potassium phosphate aqueous two-phase system towards lower concentrations. It has also been shown that the yield and purification factor of β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) in the PEG phase was gradually improved by moving the experimental system to a composition closer to the binodial. The mass transfer rates of cell debris, total protein, β-d-galactosidase and DNA have been studied and were found to be fast enough to reach equilibrium between the phases after 1.9 s of mixing in a static mixer with 24 mixing elements. A continuous extraction process for β-d-galactosidase from E. coli has been designed on the basis of these studies with a mean residence time of 6.3 min from the disintegrator inlet to the β-d-galactosidase containing PEG-phase outlet of the centrifuge. This PEG phase contained 83.5% of the total β-d-galactosidase with a purification factor of 13.6, and only 2.8% of the total protease activity of the disintegrate. All cell debris and almost all DNA were confined to the potassium phosphate phase.  相似文献   

9.
Ram sperm was frozen in the presence of the most commonly used cryoprotectants. After thawing, the overall cell surface changes provoked by freezing were assessed by centrifugal counter-current distribution (CCCD). In addition, cell membrane integrity (viability) of all the treated sperm was estimated by fluorescent staining. Fresh and refrigerated sperm were used as controls. Our results show no improvement of the cooling-induced cell surface damage by freezing in the presence of bovine seminal plasma, proline, glycine-betaine and phosphatidylcholine. Better results were obtained with vitamin E and cholesterol. However, the best protective effects were found by employing seroalbumin and lactalbumin. Furthermore, freezing in the presence of bovine lactalbumin resulted in a good maintenance of the cellular viability and of the CCCD heterogeneity in respect to fresh cells.  相似文献   

10.
The effect of two inorganic salts, ammonium sulphate and potassium dihydrogenphosphate, on the partitioning of pectinases produced by Polyporus squamosus in polyethylene glycol/crude dextran aqueous two-phase system is reported. Presence of both salts at different concentration did not affect partition of biomass, so fungal growth was occurring exclusively in the bottom phase. At 30 mmol (NH4)2SO4/l in two-phase medium, the partition coefficient of endo-pectinase was 3.9, and it was 80% improved in comparison to that obtained at twofold lower salt concentration. On the other hand, higher (NH4)2SO4 concentration increased total exo-pectinase activity produced, but did not affect substantially its partition parameters. Increasing phosphate concentration stimulated partition of both enzymes to the top phase: at 0.2 mol KH2PO4/l the partition coefficient for exo-pectinase was about 20% higher than at 0.1 mol/l, and one-sided partition of endo-pectinase was accomplished, and consequently maximal top phase yield.  相似文献   

11.
The effective elimination of phycobiliproteins from crude enzyme preparation of the red alga Caloglossa continua (Okamura) King et Puttock (Ceramiales, Florideophyceae) was investigated in an aqueous two‐phase partitioning system (ATPS) by changing the concentrations of polyethylene glycol (PEG) and ammonium sulfate (AS). The phycobiliproteins shifted from the AS‐rich lower phase to the PEG‐rich upper phase in high PEG and AS concentrations. The best ATPS condition for the elimination of phycobiliproteins from the lower phase was obtained by the combination of 20% (weight/volume; w/v) PEG and 16% (w/v) AS. However, the recovery of aldolase and mannitol‐1‐phos‐phatase activities was significantly reduced. For purification of the enzymes, a combination of 15% (w/v) PEG and 16% (w/v) AS was the best ATPS condition, because a high specific activity and recovery of the enzymes were obtained. Under these conditions, 98% of the phycobiliproteins were removed from the lower phase. Therefore, the ATPS proved to be a very useful method as a first step in the purification of enzymes from red algae.  相似文献   

12.
The purification of clavulanic acid (CA), which is an important β-lactam antibiotic produced by submerged cultivation of Streptomyces clavuligerus, was studied through the use of phosphate and polyethylene glycol-based aqueous two-phase systems. The parameters’ effect on the yield and purification was evaluated through an experimental design and the preliminary results showed that the polyethylene molecular mass and tie-line length and phase volume ratio exerted the strongest effect on the yield and distribution coefficient in the range tested. In addition, the response surface methodology was used to optimize the distribution coefficient, yield, and purification factor. The optimal conditions of yield and purification factor are in the regions where polyethylene has a low molecular mass, pH close to the isoelectric point, and lower top phase volume. A 100% yield and a 1.5-fold purification factor are obtained when extracting CA by maximizing the conditions of an aqueous two-phase system.  相似文献   

13.
14.
The partitioning of pristinamycins was studied in dextran and polyethylene glycol (PEG) aqueous two-phases systems. Pristinamycins partitioned preferentially into the PEG-rich top phase. The partition coefficient was independent of molar mass of PEG and dextran and of antibiotic concentration, but, increased exponentially with the tieline length of the system. Partition of pristinamycins was greatly improved when fatty acids esters of PEG were mixed with PEG. In such mixtures, the partition of coefficient increased up to a value of 24, dependent on the carbon chain length of fatty acids and the modified PEG concentrations. Moreover, in such system, the two groups of pristinamycins, I and II, were extracted in accordance with their hydrophobicity. Recovery of pristinanamycins produced by Streptomyces pritinaespiralis in a fermentation broth was achieved with a dextran/PEG system. Cells were confined into the bottom phase and pristinamycins partitioned in the top phase. However, due to binding of the pristinamycins to the cells, the partition coefficient was slightly lower than of pure antibiotics solutions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
The behavior of a series of pure proteins partitioned in aqueous two-phase systems is compared with their behavior during mild hydrophobic interaction chromatography (HIC). A simple theoretical rationale for this comparison is presented based upon solvophobic theory. Similarities were found in the behavior of the model proteins in the two forms of partition chromatography. This indicates that HIC may be employed as a rapid instrumental technique for the broad characterization of protein behavior, which may be of benefit in the development of liquid-liquid partitioning strategies. However, it has proved difficult to completely account for this behavior on the basis of the known physical and structural properties of the proteins used. The variety in the detailed partitioning behavior of this small sample of protein types suggests that partition in aqueous two-phase systems is uniquely sensitive to subtle differences in surface properties of complex macromolecules. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
The efficiency of a versatile in vivo cascade involving a promiscuous alcohol dehydrogenase, obtained from a biodiversity search, and a Baeyer–Villiger monooxygenase was enhanced by the independent control of the production level of each enzyme to produce ε-caprolactone and 3,4-dihydrocoumarin. This goal was achieved by adjusting the copy number per cell of Escherichia coli plasmids. We started from the observation that this number generally correlates with the amount of produced enzyme and demonstrated that an in vivo multi-enzymatic system can be improved by the judicious choice of plasmid, the lower activity of the enzyme that drives the limiting step being counter-balanced by a higher concentration. Using a preconception-free approach to the choice of the plasmid type, we observed positive and negative synergetic effects, sometimes unexpected and depending on the enzyme and plasmid combinations. Experimental optimization of the culture conditions allowed us to obtain the complete conversion of cyclohexanol (16 mM) and 1-indanol (7.5 mM) at a 0.5-L scale. The yield for the conversion of cyclohexanol was 80% (0.7 g ε-caprolactone, for the productivity of 244 mg·L −1·h −1) and that for 1-indanol 60% (0.3 g 3,4-dihydrocoumarin, for the productivity of 140 mg·L −1·h −1).  相似文献   

17.
Species that are dispersed across oceanic islands can have strong population structure due to genetic isolation, which makes it difficult to determine realistic and meaningful species boundaries. This becomes especially problematic when pest species are involved, and can result in undetected new invasions. The mango fruit fly, Bactrocera frauenfeldi (Schiner), is currently considered to be one of five morphologically similar members in a monophyletic species group distributed across Southeast Asia, Australasia, and Oceania, including three major pests. We used a phylogenomic approach with highly multiplexed amplicon sequencing to test species limits and evaluate the relationships among species in the B. frauenfeldi species complex and two closely related species. We obtained sequence data from 196 specimens for 395 nuclear DNA loci, totalling 102 kb, of which 2.2 kb were parsimony informative sites. Based on morphology, biogeography, and phylogenetic analyses, we conclude that there are five distinct species in the complex in our phylogeny. Our results show that the morphological differences between B. frauenfeldi and B. albistrigata (de Meijere) are part of a continuum that cannot be phylogenetically separated into monophyletic groups. We therefore synonymize the names of two major pests: B. albistrigata syn. rev. with B. frauenfeldi, making B. frauenfeldi now recognized as a widespread pest across Australasia and Southeast Asia. We evaluated the use of COI for pest recognition and conclude that it cannot reliably distinguish between six of the seven species we studied, thus new molecular approaches will be necessary for effective management and the prevention of incursions.  相似文献   

18.
5-(2-chloroethyl)-2'-deoxyuridine (CEDU) is a pyrimidine nucleoside analogue formerly in development for the treatment of herpes simplex virus infections. The compound proved clearly mutagenic in the mouse spot test and exhibited weak activity in the Salmonella reverse mutation test, which led to the termination of the compound's development. In another study, CEDU, administered orally to beta-galactosidase (lacZ) transgenic mice (Muta Mouse) for five days, induced a clear increase in lacZ mutant frequencies in spleen, lung, and bone marrow. In the present follow-up study, we analyzed 32 of those lacZ mutants isolated from the bone marrow of the Muta Mouse animals of the experiments mentioned above, in order to obtain further information on the type of mutations induced by CEDU. CEDU induced a pronounced increase in A:T to G:C transitions. The distribution of A:T to G:C transitions was clearly non-random, showing a bias towards T to C substitutions in the coding DNA strand and a preference to occur in the sequence motif 5'-(G or C)-T-G-3'. Our data support the hypothesis that CEDU, after being phosphorylated, is incorporated into cellular DNA in place of thymidine, which leads to mispairing with guanosine during subsequent DNA replication. As a result, the compound is thought to exert its mutagenicity by inducing mismatches leading to T to C transitions. Our findings point towards a mode of mutagenic action of CEDU that differs fundamentally from that of other antiviral antinucleosides whose clastogenic and recombinogenic activities prevail.  相似文献   

19.
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b5 reductase–cyt b5. In fungi, limited information is available for the cyt b5 reductase–cyt b5 system. Here we characterized the kinetic mechanism of (cyt b5r)–cyt b5 redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b5r followed a “ping-pong” mechanism and could directly reduce cytochrome c. However, unlike other cyt b5 reductases, Pc-cyt b5r lacked the typical ferricyanide reduction activity, a standard for cyt b5 reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b5r–cyt b5 complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b5r–cyt b5 complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b5r–cyt b5) in terms of supporting a P450 monooxygenase activity.  相似文献   

20.

Background

Membrane proteins constitute a major group of proteins and are of great significance as pharmaceutical targets, but underrepresented in the Protein Data Bank. Particular reasons are their low expression yields and the constant need for cautious and diligent handling in a sufficiently stable hydrophobic environment substituting for the native membrane. When it comes to protein crystallization, such an environment is often established by detergents.

Scope of review

In this review, 475 unique membrane protein X-ray structures from the online data bank “Membrane proteins of known 3D structure” are presented with a focus on the detergents essential for protein crystallization. By systematic analysis of the most successful compounds, including current trends in amphiphile development, we provide general insights for selection and design of detergents for membrane protein crystallization.

Major conclusions

The most successful detergents share common features, giving rise to favorable protein interactions. The hydrophile-lipophile balance concept of well-balanced hydrophilic and hydrophobic detergent portions is still the key to successful protein crystallization. Although a single detergent compound is sufficient in most cases, sometimes a suitable mixture of detergents has to be found to alter the resulting protein-detergent complex. Protein crystals with a high diffraction limit involve a tight crystal packing generally favored by detergents with shorter alkyl chains.

General significance

The formation of well-diffracting membrane protein crystals strongly depends on suitable surfactants, usually screened in numerous crystallization trials. The here-presented findings provide basic criteria for the assessment of surfactants within the vast space of potential crystallization conditions for membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号