首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
光对紫甘蓝花青素合成代谢影响及基因表达模式分析   总被引:1,自引:0,他引:1  
为了研究光对紫甘蓝花青素合成代谢影响及其调控机制,以“早红”紫甘蓝为试验材料,普通甘蓝“丰园913”(青甘蓝)为对照,对生长1周的幼苗进行遮光处理和光照处理,采用pH差示法测定花青素含量,半定量RT-PCR分析花青素合成途径结构基因表达模式。结果表明:光照处理与遮光处理后,除PAL、UFGT外,紫甘蓝结构基因表达无明显差异,无光条件下,紫甘蓝幼苗仍着色明显,而青甘蓝幼苗完全白化;与青甘蓝相比,紫甘蓝花青素合成途径下游结构基因表达量明显增高,幼苗着色深,揭示紫甘蓝花青素的大量积累与下游结构基因的表达密切相关。  相似文献   

5.
6.
7.
8.
Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling pathways in tomato. Western blot analysis confirmed the elevated phytochrome protein levels in dark-grown seedlings of the respective PHY overexpressing (PHYOE) lines. Exposure to 4 h of red light resulted in a decrease in phytochrome A protein level in the PHYAOE lines, indicating that the chromophore availability is not limiting for assembly into holoprotein and that the excess of phytochrome A protein is also targeted for light-regulated destruction. The elongation and anthocyanin accumulation responses of plants grown under white light, red light, far-red light, and end-of-day far-red light were used for characterization of selected PHYOE lines. In addition, the anthocyanin accumulation response to different fluence rates of red light of 4-d-old dark-grown seedlings was studied. The elevated levels of phyA in the PHYAOE lines had little effect on seedling and adult plant phenotype. Both PHYAOE in the phyA mutant background and PHYB2OE in the double-mutant background rescued the mutant phenotype, proving that expression of the transgene results in biologically active phytochrome. The PHYB1OE lines showed mild effects on the inhibition of stem elongation and anthocyanin accumulation and little or no effect on the red light high irradiance response. By contrast, the PHYB2OE lines showed a strong inhibition of elongation, enhancement of anthocyanin accumulation, and a strong amplification of the red light high irradiance response.  相似文献   

9.
10.
The flavonoid pathway leading to anthocyanin biosynthesis in maize is controlled by multiple regulatory genes and induced by various developmental and environmental factors. We have investigated the effect of the regulatory loci R, B, and Pl on anthocyanin accumulation and on the expression of four genes (C2, A1, Bz1, and Bz2) in the biosynthetic pathway during an inductive light treatment. The results show that light-mediated anthocyanin biosynthesis is regulated solely by R; the contributions of B and Pl are negligible in young seedlings. Induction of the A1 and Bz2 genes by high fluence-rate white light requires the expression of a dominant R allele, whereas accumulation of C2 and Bz1 mRNA occurs with either a dominant or recessive allele at R. A1 and Bz2 mRNA accumulate only in response to high fluence-rate white light, but Bz1 is fully expressed in dim red light. Some C2 mRNA is induced by dim red light, but accumulation is far greater in high fluence-rate white light. Furthermore, expression from both dominant and recessive alleles of the regulatory gene R is enhanced by high fluence-rate white light. Seedlings with a recessive allele at R produce functional chalcone synthase protein (the C2 gene product) but accumulate no anthocyanins, suggesting that, in contrast to the R-mediated coordinate regulation of C2 and Bz1 observed in the aleurone, C2 expression in seedlings is independent of R and appears to be regulated by a different light-sensitive pathway.  相似文献   

11.
Transcriptional regulation of anthocyanin biosynthesis in red cabbage   总被引:6,自引:0,他引:6  
Youxi Yuan  Li-Wei Chiu  Li Li 《Planta》2009,230(6):1141-1153
  相似文献   

12.
13.
14.
15.
16.
Investigations of phytochrome mutants of Arabidopsis suggested that the expression of chalcone synthase ( chs ) and anthocyanin accumulation is predominantly controlled by phytochrome A. To test the functionality of phytochrome A and B at the molecular level recombinant, yeast-derived phytochrome-phycocyanobilin adducts (phyA*, phyB*) and oat phytochrome A (phyA) were microinjected into etiolated aurea tomato seedlings. Subsequent to microinjection anthocyanin and chlorophyll accumulation was monitored as well as β-glucuronidase (GUS) expression mediated by light-regulated promoters ( chs , chlorophyll a/b binding protein ( lhcb1 ) and ferredoxin NADP+ oxidoreductase ( fnr )). Microinjection of phyA* under white light conditions caused anthocyanin and chlorophyll accumulation and mediated chs —GUS, lhcb1 —GUS and fnr —GUS expression. Microinjection of phyB* under identical conditions induced chlorophyll accumulation and mediated lhcb1 —GUS and fnr —GUS expression but neither anthocyanin accumulation nor chs —GUS expression were observed. The characterization of Arabidopsis phytochrome mutants and the microinjection experiments suggested that phyB cannot induce the accumulation of juvenile anthocyanin. Microinjections under far-red light conditions demonstrated that phyA can act independently of other photoreceptors. By contrast, phyB* injections under red light conditions indicated that phyB* needs interactions with other photoreceptors to mediate a rapid and efficient de-etiolation signal.  相似文献   

17.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号