首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-two patients reporting to the Lundu District Hospital, Sarawak, Malaysian Borneo, with uncomplicated falciparum malaria were recruited into a multifaceted study to assess treatment response. Following combined chloroquine and sulphadoxine/pyrimethamine treatment the patients were followed for 28 days according to the World Health Organisation in vivo drug response protocol. The in vivo study revealed that 13 (41%) of the patients had a sensitive response to treatment, five (16%) cleared asexual stage parasites but had persistent gametocytes, 11 (34%) had RI type resistance and three (9%) had RII type resistance requiring quinine intervention before day 7 for parasite clearance. Although clinically insignificant, patients with persistent gametocytes, surviving chloroquine and sulphadoxine/pyrimethamine treatment during maturation, were placed in the reduced response to treatment group for analysis. Allelic typing detected 100% prevalence of the pfcrt K76T marker associated with chloroquine resistance and 78% prevalence of the pfdhfr NRNL haplotype associated with sulphadoxine/pyrimethamine treatment failure. High serum chloroquine levels and pfdhfr haplotypes with 相似文献   

2.
North-east India, being a corridor to South-east Asia, is believed to play an important role in transmitting drug resistant Plasmodium falciparum malaria to India and South Asia. North-east India was the first place in India to record the emergence of drug resistance to chloroquine as well as sulphadoxine/pyrimethamine. Presently chloroquine resistance is widespread all over the North-east India and resistance to other anti-malarials is increasing. In this study both in vivo therapeutic efficacy and molecular assays were used to screen the spectrum of drug resistance to chloroquine and sulphadoxine/pyrimethamine in the circulating P. falciparum strains. A total of 220 P. falciparum positives subjects were enrolled in the study for therapeutic assessment of chloroquine and sulphadoxine/pyrimethamine and assessment of point mutations conferring resistances to these drugs were carried out by genotyping the isolates following standard methods. Overall clinical failures in sulphadoxine/pyrimethamine and chloroquine were found 12.6 and 69.5% respectively, while overall treatment failures recorded were 13.7 and 81.5% in the two arms. Nearly all (99.0%) the isolates had mutant pfcrt genotype (76T), while 68% had mutant pfmdr-1 genotype (86Y). Mutation in dhps 437 codon was the most prevalent one while dhfr codon 108 showed 100% mutation. A total of 23 unique haplotypes at the dhps locus and 7 at dhfr locus were found while dhps-dhfr combined loci revealed 49 unique haplotypes. Prevalence of double, triple and quadruple mutations were common while 1 haplotype was found with all five mutated codons (F/AGEGS/T) at dhps locus. Detection of quadruple mutants (51I/59R/108N/164L) in the present study, earlier recorded from Car Nicobar Island, India only, indicates the presence of high levels of resistance to sulphadoxine/pyrimethamine in north-east India. Associations between resistant haplotypes and the clinical outcomes and emerging resistance in sulphadoxine/pyrimethamine in relation to the efficacy of the currently used artemisinin combination therapy are discussed.  相似文献   

3.
The declining efficacy of chloroquine and pyrimethamine/sulphadoxine in the treatment of human malaria has led to the use of newer antimalarials such as mefloquine and artemisinin. Sequence polymorphisms in the pfmdr1 gene, the gene encoding the plasmodial homologue of mammalian multidrug resistance transporters, have previously been linked to resistance to chloroquine in some, but not all, studies. In this study, we have used a genetic cross between the strains HB3 and 3D7 to study inheritance of sensitivity to the structurally unrelated drugs mefloquine and artemisinin, and to several other antimalarials. We find a complete allelic association between the HB3-like pfmdr1 allele and increased sensitivity to these drugs in the progeny. Different pfmdr1 sequence polymorphisms in other unrelated lines were also associated with increased sensitivity to these drugs. Our results indicate that the pfmdr1 gene is an important determinant of susceptibility to antimalarials, which has major implications for the future development of resistance.  相似文献   

4.
The present communication deals with drug-resistant Plasmodium falciparum malaria complicating hematologic malignancies (leukemias, n = 24, and lymphomas, n = 7) in children. Of 50 cases of hematologic malignancies, 31 patients were microscopically diagnosed as having P. falciparum infection (MP +). Initially, all the patients were treated with chloroquine. The results of primary treatment showed chloroquine resistance in 16 (51. 62%) cases. Of these 16 chloroquine-resistant cases, 13 were secondarily treated with a combination of pyrimethamine plus sulfamethopyrazine. The results of secondary treatment also revealed resistance to pyrimethamine plus sulfamethopyrazine in 6 of 13 (46. 10%) cases. The 6 pyrimethamine plus sulfamethopyrazine-resistant P. falciparum cases were finally cured by quinine therapy, against which no resistance was encountered. Conversely, in the control group comprising 38 cases of P. falciparum without malignancy, the incidence of chloroquine resistance was found in only 9 cases, which is rather low (23.70%). Of these 7 chloroquine-resistant cases, 5 were found to be sensitive to pyrimethamine plus sulfamethopyrazine treatment, while the 2 nonresponders were finally cured with quinine. The overall results of this study show a high prevalence of chloroquine resistance among clinical cases of falciparum malaria (25/69; 30.6%). Among the nonresponders (n = 20) 40% of cases were also resistant to the pyrimethamine plus sulfamethopyrazine combination. There was no resistance to quinine.  相似文献   

5.
Strains of Plasmodium berghei resistant to clindamycin or minocycline were selected by a procedure in which groups of infected mice were treated with increasing doses of drug during each of a series of subpassages. Groups of five mice, each infected by intravenous inoculation with 10 million parasitized erythrocytes, were treated orally with different doses of drug for four consecutive days beginning on the day of infection. Subpassages were routinely made by Day 7, using donor mice from the group that had been treated with the highest dose of drug that allowed for some development of parasitemia during the preceding passage. Drug doses were increased in each passage as dictated by the development of parasitemia during the previous treated passage.The rate of development of resistance to clindamycin or minocycline was much slower than to conventional antimalarials such as chloroquine, quinine, or pyrimethamine. P. berghei developed total resistance to the latter compounds in nine to 12 treated passages in mice over a period of 60 to 85 days. In contrast, development of total resistance to clindamycin required 42 treated passages over a period of 300 days. Total resistance to minocycline was not attained during 86 successive minocycline-treated passages in mice over a period of 600 days, but a sixfold increase in resistance to minocycline was observed.The clindamycin-resistant strain was normally sensitive to minocycline, chloroquine, quinine, and pyrimethamine. The strain partially resistant to minocycline was normally sensitive to clindamycin, chloroquine, quinine, and pyrimethamine. Resistance to clindamycin was stable during 51 drug-free passages in mice over a period of 1 year. Resistance to minocycline was unstable. During 16 drug-free passages in mice the strain reverted towards normal sensitivity to minocycline. Strains resistant to clindamycin or minocycline showed no difference in rate of development in mice as compared to the parent strain. Likewise, only minor morphological modifications were seen in Giemsa-stained blood smears between the two resistant strains and the parent strain.These results suggest that other species of malaria may develop resistance to clindamycin or minocycline. Should resistance to one of these compounds appear, however, it should not invalidate the use of the other in the treatment of malaria.  相似文献   

6.
7.
Malarial infection during pregnancy has been associated with maternal anemia and death, abortion, still-birth and is a major cause of low birth weight, an important risk factor for infant morbidity and mortality in endemic areas. The present study was designed to delineate the oxidative stress in various organs (liver, spleen, kidney, brain and placenta) of pregnant Plasmodium berghei infected BALB/c mice. It was observed that pregnant-infected mice had higher parasitaemia than nonpregnant-infected mice. Most notably, levels of malondialdehyde (MDA), a measure of lipid peroxidation, reduced glutathione (GSH) and superoxide dismutase (SOD) levels were significantly higher in the liver, spleen, kidney and brain of pregnant-infected mice compared with pregnant mice. Although MDA levels were significantly higher, GSH and SOD levels remained unaltered in the placenta of pregnant-infected mice compared with pregnant mice. Furthermore, catalase activity was significantly lower in all the organs of pregnant-infected mice compared with pregnant mice. Histopathological observations in the organs clearly show the cellular and morphological alterations that may be occurring due to increased lipid peroxidation. Taken together, the data suggest that the increased severity of malarial infection during pregnancy may be due to accentuated oxidative stress.  相似文献   

8.
Neurological and cognitive impairment persist in more than 20% of cerebral malaria (CM) patients long after successful anti-parasitic treatment. We recently reported that long term memory and motor coordination deficits are also present in our experimental cerebral malaria model (ECM). We also documented, in a murine model, a lack of obvious pathology or inflammation after parasite elimination, suggesting that the long-term negative neurological outcomes result from potentially reversible biochemical and physiological changes in brains of ECM mice, subsequent to acute ischemic and inflammatory processes. Here, we demonstrate for the first time that acute ECM results in significantly reduced activation of protein kinase B (PKB or Akt) leading to decreased Akt phosphorylation and inhibition of the glycogen kinase synthase (GSK3β) in the brains of mice infected with Plasmodium berghei ANKA (PbA) compared to uninfected controls and to mice infected with the non-neurotrophic P. berghei NK65 (PbN). Though Akt activation improved to control levels after chloroquine treatment in PbA-infected mice, the addition of lithium chloride, a compound which inhibits GSK3β activity and stimulates Akt activation, induced a modest, but significant activation of Akt in the brains of infected mice when compared to uninfected controls treated with chloroquine with and without lithium. In addition, lithium significantly reversed the long-term spatial and visual memory impairment as well as the motor coordination deficits which persisted after successful anti-parasitic treatment. GSK3β inhibition was significantly increased after chloroquine treatment, both in lithium and non-lithium treated PbA-infected mice. These data indicate that acute ECM is associated with abnormalities in cell survival pathways that result in neuronal damage. Regulation of Akt/GSK3β with lithium reduces neuronal degeneration and may have neuroprotective effects in ECM. Aberrant regulation of Akt/GSK3β signaling likely underlies long-term neurological sequelae observed in ECM and may yield adjunctive therapeutic targets for the management of CM.  相似文献   

9.
Typhoid fever and gastroenteritis caused by Salmonella enterica species are increasing globally. Pregnancy poses a high risk, but it is unclear how maternal immunity to infection is altered. In mice, susceptible strains die of S. enterica serovar typhimurium (ST) infection within 7 days whereas resistant mice (129 x 1/SvJ) develop a chronic infection. We found that virulent ST infection during pregnancy, in normally resistant 129 x 1/SvJ mice, evoked approximately 100% fetal loss and surprisingly >60% host fatality, with a median survival of 6 days. Splenic bacterial load was 1000-fold higher in pregnant mice. This correlated to a diminished splenic recruitment/expansion of innate immune cells: dendritic cells, neutrophils, and NK cells. In particular, the splenic expansion and activation of NK cells postinfection seen in nonpregnant mice was lacking in pregnancy. Most notably, pregnant-infected mice had decreased production of serum IL-12 and increased IL-6 levels. Moreover, uteroplacental tissue of pregnant-infected mice exhibited an approximately 40-fold increase in IL-6 mRNA expression relative to noninfected placenta, whereas IL-12p40 was not increased. In vivo blocking of IL-6 significantly reduced the splenic bacterial burden in pregnant mice yet failed to prevent fetal loss. Fetal demise correlated to the rapidity of infection; by 14 h, ST expanded to >10(5) in the placenta and had reached the fetus. Therefore, the preferential placental expansion of ST plausibly altered the inflammatory response toward IL-6 and away from IL-12, reducing the recruitment/activation of splenic innate immune cells. Thus, highly virulent pathogens may use placental invasion to alter systemic host resistance to infection.  相似文献   

10.
OBJECTIVE--To compare treatment and protection against falciparum malaria in pregnant and non-pregnant women with three drug regimens. DESIGN--Prospective intervention study with six weeks'' follow up. Patients received one of three drug regimens in order of entry. SETTING--Primary care hospital and secondary girls'' school in rural western Kenya. PATIENTS--158 of 988 pregnant women (89 primigravid and 69 multigravid) in the third trimester and 105 of 1488 non-pregnant schoolgirls of reproductive age were parasitaemic (more than 500 asexual forms/microliter. These women were divided into three treatment groups by gravid state. INTERVENTIONS--Women were treated with chloroquine base 25 mg/kg over three days or pyrimethamine 75 mg and sulfadoxine 1500 mg as a single dose or chlorproguanil 1.2 mg/kg and dapsone 2.4 mg/kg as a single dose. MAIN OUTCOME MEASURES--Parasitaemia and haemoglobin concentrations measured at seven day intervals for six weeks. RESULTS--Primigravid women were more likely to be parasitaemic on follow up than multigravidas or nulligravidas, whose response was about the same. Parasites did not clear by day 7 in primigravidas in six (20%) of 30 who received chloroquine, three (8%) of 35 treated with pyrimethamine and sulfadoxine, and none of 23 treated with chlorproguanil and dapsone. At day 28, 83%, 19%, and 67% of primigravidas in these treatment groups were parasitaemic. Haemoglobin concentrations rose in all women, but improvement was sustained only in women who remained free of parasites. CONCLUSIONS--Clearance of parasites was better with either pyrimethamine and sulfadoxine or chlorproguanil and dapsone than with chloroquine. Longest protection was obtained with pyrimethamine and sulfadoxine.  相似文献   

11.
Low birth weight and fetal loss are commonly attributed to malaria in endemic areas, but the cellular and molecular mechanisms that underlie these poor birth outcomes are incompletely understood. Increasing evidence suggests that dysregulated hemostasis is important in malaria pathogenesis, but its role in placental malaria (PM), characterized by intervillous sequestration of Plasmodium falciparum, proinflammatory responses, and excessive fibrin deposition is not known. To address this question, markers of coagulation and fibrinolysis were assessed in placentae from malaria-exposed primigravid women. PM was associated with significantly elevated placental monocyte and proinflammatory marker levels, enhanced perivillous fibrin deposition, and increased markers of activated coagulation and suppressed fibrinolysis in placental plasma. Submicroscopic PM was not proinflammatory but tended to be procoagulant and antifibrinolytic. Birth weight trended downward in association with placental parasitemia and high fibrin score. To directly assess the importance of coagulation in malaria-induced compromise of pregnancy, Plasmodium chabaudi AS-infected pregnant C57BL/6 mice were treated with the anticoagulant, low molecular weight heparin. Treatment rescued pregnancy at midgestation, with substantially decreased rates of active abortion and reduced placental and embryonic hemorrhage and necrosis relative to untreated animals. Together, the results suggest that dysregulated hemostasis may represent a novel therapeutic target in malaria-compromised pregnancies.  相似文献   

12.
Plasmodium falciparum gametocyte levels are influenced by level of regional endemicity, the antimalarial treatment, and the therapeutic response of patients. Few previous studies have related these factors in Colombia. Here, gametocytaemia was evaluated with respect to two treatment schemes (sulfadoxine/pyrimethamine and sulfadoxine/pyrimethamine plus chloroquine), the patient response (adequate or failure), and the locality (two areas of varying case frequency). One hundred forty-eight residents of Turbo and Zaragoza (Antioquia), all with uncomplicated malaria, were evaluated. The gametocytaemia and the rates of clinical malaria at the beginning of treatment were greater in Turbo than in Zaragoza. No statistically significant differences in the gametocytaemia by treatment schemes or therapeutic responses were noted, although the patients who received SP had more gametocytes than those treated with SP+CQ. Gametocytaemia was not correlated with asexual parasitemia or sex and age of patient. The difference in the level of gametocytaemia between Turbo and Zaragoza appears to be influenced by the time elapsed between the appearance of symptoms and the beginning of treatment.  相似文献   

13.
Human cerebral malaria causes neurological and behavioral deficits which persist long after resolution of infection and clearance of parasites with antimalarial drugs. Previously, we demonstrated that during active infection, mice with cerebral malaria demonstrated negative behavioral outcomes. Here we used a chloroquine treatment model of cerebral malaria to determine whether these abnormal outcomes would be persistent in the mouse model. C57BL/6 mice were infected with Plasmodium berghei ANKA, and treated for ten days. After cessation of chloroquine, a comprehensive assessment of cognitive and motor function demonstrated persistence of abnormal behavioral outcomes, 10 days after successful eradication of parasites. Furthermore, these deficits were still evident forty days after cessation of chloroquine, indicating persistence long after successful treatment, a hallmark feature of human cerebral malaria. Thus, cognitive tests similar to those used in these mouse studies could facilitate the development of adjunctive therapies that can ameliorate adverse neurological outcomes in human cerebral malaria.  相似文献   

14.
The pathological changes associated with malarial infection in pregnancy were studied in rats and mice infected with Plasmodium berghei at different stages of gestation. Histopathological and ultrastructural studies of infected placentae near term in both species revealed disruption of architecture with gross thickening and necrosis of cells in the labyrinthine zone and fibrosis of the trilaminar trophoblast separating the maternal and fetal circulations. In the mouse, the extent of histopathological alterations in infected placentae ranged from the presence of immature erythrocytes in the fetal circulation in low grade maternal infection, to the marked deposition of fibrinoid material on the trilaminar trophoblast and inflammatory masses in severely infected placentae. In the rat, histopathological aberrations in the placentae were marked by placental stroma edema, fibrosis, and cellular infiltration. Immunohistological studies of cryostat sections of placentae from infected animals showed more parasites and pigment in infected mouse placentae than in the corresponding rat organ, but in both species parasites and pigment were largely confined to the maternal blood spaces and were only occasionally found in necrotic areas of trophoblast. No clear differences were observed between infected and control placentae in terms of the amount of IgG, IgM, or IgA which were each present in various amounts. These observations and the rarity of congenital malaria in the animals indicate that the placenta constitutes a major barrier to infection of the fetus. However, the pathological aberrations in the infected placentae may impose a biochemical stress upon the fetus which may account for the low birthweight, the increased frequency of abortion, and the greatly increased maternal and fetal death rates observed in malaria.  相似文献   

15.
The effect of antimalarials on gametocytes can influence transmission and the spread of drug resistance. In order to further understand this relationship, we determined the proportion of gametocyte carriers over time post-treatment in patients with uncomplicated Plasmodium falciparum malaria who were treated with either chloroquine (CQ) or sulfadoxine/pyrimethamine (SP). The overall proportion of gametocyte carriers was high (85%) and not statistically significantly different between the CQ and SP treatment groups. However, an increased risk of carrying gametocytes on day 14 of follow up (1.26 95% CI 1.10-1.45) was found among patients having therapeutic failure to CQ compared with patients having an adequate therapeutic response. This finding confirms and extends reports of increased risk of gametocytaemia among CQ resistant P. falciparum.  相似文献   

16.
An assay was developed measuring the disruption of rosettes between Plasmodium falciparuminfected (trophozoites) and uninfected erythrocytes by the antimalarial drugs quinine, artemisinin mefloquine, primaquine, pyrimethamine, chloroquine and proguanil. At 4 hr incubation rosettes were disrupted by all the drugs in a dose dependent manner. Artemisinin and quinine were the most effective anti-malarials at disrupting rosettes at their therapeutic concentrations with South African RSA 14, 15, 17 and The Gambian FCR-3 P. falciparum strains. The least effective drugs were proguanil and chloroquine. A combination of artemisinin and mefloquine was more effective than each drug alone. The combinations of pyrimethamine or primaquine, with quinine disrupted more rosettes than quinine alone. Quinine may be an effective drug in the treatment of severe malaria because the drug efficiently reduces the number of rosettes.  相似文献   

17.
Artesunate, a semi-synthetic derivative of a naturally occurring anti-malarial artemisinin was compared with chloroquine in C57BL/6 mice infected with Plasmodium berghei Anka (PbA). A 7-day oral administration of artesunate prevented parasitaemia at 10 mg/kg/day. However, recrudescence of parasitaemia and cerebral malaria occurred upon cessation of treatment followed by death within 28 days. However, a 14-day course of artesunate (100 mg/kg/day) prevented completely the development of parasitaemia and cerebral malaria with a survival of more than 60-days as did 10 mg/kg/day chloroquine. These data demonstrate that oral artesunate inhibits PbA and prevents cerebral malaria, but needs to be administered at high dose and for prolonged time to eradicate PbA infection in mice.  相似文献   

18.
Malaria continues to cause millions of deaths annually. No specific effective treatment has yet been found for cerebral malaria, one of the most severe complications of the disease. The pathology of cerebral malaria is considered to be primarily immunological. We examined a number of compounds with known effects on the immune system, in a murine model of cerebral malaria. Of the compounds tested, only fasudil and curcumin had significant effects on the progression of the disease. Although neither drug caused a reduction in parasitemia, survival of the treated mice was significantly increased, and the development of cerebral malaria was either delayed or prevented. Our results support the hypothesis that an immunomodulator efficient in preventing CM should be administered together with anti-plasmodial drugs to prevent severe malaria disease; curcumin and fasudil should be further investigated to determine efficiency and feasibility of treatment.  相似文献   

19.
Plasma samples from patients undergoing treatment in malaria endemic countries often contain anti-malaria drugs, that may overstate effects of specific antibodies in growth inhibition assays (GIA). We describe a modified assay that uses drug resistant P. falciparum parasites (W2) that circumvents the requirement for dialyzing samples that may likely contain drugs such as chloroquine and sulfadoxine/pyrimethamine (SP).  相似文献   

20.
Worldwide spread of Plasmodium falciparum drug resistance to conventional antimalarials, chloroquine and sulfadoxine/pyrimethamine, has been imposing a serious public health problem in many endemic regions. Recent discovery of drug resistance-associated genes, pfcrt, pfmdr1, dhfr, and dhps, and applications of microsatellite markers flanking the genes have revealed the evolution of parasite resistance to these antimalarials and the geographical spread of drug resistance. Here, we review our recent knowledge of the evolution and spread of parasite resistance to chloroquine and sulfadoxine/pyrimethamine. In both antimalarials, resistance appears to be largely explained by the invasion of limited resistant lineages to many endemic regions. However, multiple, indigenous evolutionary origins of resistant lineages have also been demonstrated. Further molecular evolutionary and population genetic approaches will greatly facilitate our understanding of the evolution and spread of parasite drug resistance, and will contribute to developing strategies for better control of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号