首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae is a promising source organism for the development of a practical, eukaryotic crude extract based cell-free protein synthesis (CFPS) system. Crude extract CFPS systems represent a snapshot of the active metabolism in vivo, in response to the growth environment at the time of harvest. Therefore, fermentation plays a central role in determining metabolic activity in vitro. Here, we developed a fermentation protocol using chemically defined media to maximize extract performance for S. cerevisiae-based CFPS. Using this new protocol, we obtained a 4-fold increase in protein synthesis yields with extracts derived from wild-type S288c as compared to a previously developed protocol that uses complex growth media. The final luciferase yield in our new method was 8.86 ± 0.28 μg mL−1 in a 4 h batch reaction. For each of the extracts processed under different fermentation conditions, synthesized protein, precursor monomers (amino acids), and energy substrates (nucleotides) were evaluated to analyze the effect of the changes in the growth environment on cell-free metabolism. This study underscores the critical role fermentation plays in preparing crude extract for CFPS reactions and offers a simple strategy to regulate desired metabolic activity for cell-free synthetic biology applications based on crude cell extracts.  相似文献   

2.
Recent advances in cell-free protein synthesis have enabled the folding and assembly of full-length antibodies at high titers with extracts from prokaryotic cells. Coupled with the facile engineering of the Escherichia coli translation machinery, E. coli based in vitro protein synthesis reactions have emerged as a leading source of IgG molecules with nonnatural amino acids incorporated at specific locations for producing homogeneous antibody–drug conjugates (ADCs). While this has been demonstrated with extract produced in batch fermentation mode, continuous extract fermentation would facilitate supplying material for large-scale manufacturing of protein therapeutics. To accomplish this, the IgG-folding chaperones DsbC and FkpA, and orthogonal tRNA for nonnatural amino acid production were integrated onto the chromosome with high strength constitutive promoters. This enabled co-expression of all three factors at a consistently high level in the extract strain for the duration of a 5-day continuous fermentation. Cell-free protein synthesis reactions with extract produced from cells grown continuously yielded titers of IgG containing nonnatural amino acids above those from extract produced in batch fermentations. In addition, the quality of the synthesized IgGs and the potency of ADC produced with continuously fermented extract were indistinguishable from those produced with the batch extract. These experiments demonstrate that continuous fermentation of E. coli to produce extract for cell-free protein synthesis is feasible and helps unlock the potential for cell-free protein synthesis as a platform for biopharmaceutical production.  相似文献   

3.
Escherichia coli extracts activate cell-free protein synthesis systems by providing the catalysts for translation and other supporting reactions. Recent results suggest that high-density fermentations can be used to provide the source cells, but the subsequent cell extract preparation procedure requires multiple centrifugation and dialysis steps as well as an expensive runoff reaction. In the work reported here, the extract preparation protocol duration was reduced by nearly 50% by significantly shortening several steps. In addition, by optimizing the runoff incubation, overall reagent costs were reduced by 70%. Nonetheless, extracts produced from the shorter, less expensive procedure were equally active. Crucial steps were further examined to indicate minimal ribosome loss during the standard 30,000g centrifugations. Furthermore, sucrose density centrifugation analysis indicated that although an incubation step significantly activates the extract, ribosome/polysome dissociation is not required. These insights suggest that consistent cell extract can be produced more quickly and with considerably less expense for large-scale cell-free protein production, especially when combined with high-density fermentation protocols.  相似文献   

4.
Using aminoacyl-tRNA synthetase/suppressor tRNA pairs derived from Methanocaldococcus jannaschii, an Escherichia coli cell-free protein production system affords proteins with site-specifically incorporated unnatural amino acids (UAAs) in high yields through the use of optimized amber suppressor tRNA(CUA)(opt) and optimization of reagent concentrations. The efficiency of the cell-free system allows the incorporation of trifluoromethyl-phenylalanine using a polyspecific synthetase evolved previously for p-cyano-phenylalanine, and the incorporation of UAAs at two different sites of the same protein without any re-engineering of the E. coli cells used to make the cell-free extract.  相似文献   

5.
Ozawa K  Dixon NE  Otting G 《IUBMB life》2005,57(9):615-622
Modern cell-free in vitro protein synthesis systems present powerful tools for the synthesis of isotope-labeled proteins in high yields. The production of selectively 15 N-labeled proteins from 15 N-labeled amino acids is particularly economic and yields are often sufficient to analyze the proteins very quickly by two-dimensional NMR spectra recorded of the crude reaction mixture without concentration or chromatographic purification of the protein. We review methodological aspects of cell-free in vitro protein synthesis based on an Escherichia coli cell extract, in particular with regard to the production of 15 N-labeled proteins for analysis by NMR spectroscopy.  相似文献   

6.
A simple method for depletingE. coli S30 extracts of endogenous tRNA has been developed. An ethanolamine-Sepharose® column equilibrated with water selectively captured the tRNA molecules inE. coli S30 extracts. As a result, S30 extracts filtered through this column became completely dependent upon the addition of exogenous tRNA to mediate cell-free protein synthesis reactions. We anticipate that the procedures developed and described will be particularly useful forin vitro suppression reaction studies designed to introduce unnatural amino acids into protein molecules.  相似文献   

7.
Cell-free protein synthesis is a useful research tool and now stands poised to compete with in vivo expression for commercial production of proteins. However, both the extract preparation and protein synthesis procedures must be scaled up. A key challenge is producing the required amount of biomass that also results in highly active cell-free extracts. In this work, we show that the growth rate of the culture dramatically affects extract performance. Extracts prepared from cultures with a specific growth rate of 0.7/h or higher produced approximately 0.9 mg/mL of chloramphenicol acetyl transferase (CAT) in a batch reaction. In contrast, when the source culture growth rate was 0.3/h, the resulting extract produced only 0.5 mg/mL CAT. Examination of the ribosome content in the extracts revealed that the growth rate of the source cells strongly influenced the final ribosome concentration. Polysome analysis of cell-free protein synthesis reactions indicated that about 22% of the total 70S ribosomes are in polysomes for all extracts regardless of growth rate. Furthermore, the overall specific production from the 70S ribosomes is about 22 CAT proteins per ribosome over the course of the reaction in all cases. It appears that rapid culture growth rates are essential for producing a productive extract. However, growth rate does not seem to influence specific ribosome activity. Rather, the increase in extract productivity is a result of a higher ribosome concentration. These results are important for cell-free technology and also suggest an assay for intrinsic in vivo protein synthesis activity.  相似文献   

8.
9.
In cell-free protein-synthesizing systems containing an S30 extract from liver and brain cortex tissues of 22-day-old fetuses and of male WAG rats (1-900 days old), the minimal rate of protein synthesis was observed in the fetuses, while the maximal one - in 7-day-old animals. The difference in the rates of protein synthesis correlated with the minimal concentration of total tRNA in the former group and with its maximal concentration in the latter. In fetal tissues, an addition to cell-free systems of total tRNA isolated from homologous tissues of 7-day-old animals augmented protein synthesis up to a level observed in 7-day-old animals, whereas in the tissues of animals belonging to other age groups total tRNA had a far less pronounced stimulating effect which decreased with age. Fractionation of total tRNA and analysis of effects of individual tRNAs on protein synthesis demonstrated that the stimulating influence was induced by tRNA(2Arg), tRNA(4Arg) and tRNA(2Val) from brain cortex and by tRNA(2Leu), tRNA(5Leu), tRNA(2Val), tRNA(1Met) and tRNA(2Met) from liver.  相似文献   

10.
11.
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.  相似文献   

12.
Cell-free synthesis of recombinant proteins has emerged as an alternative method of protein production although protein yields still cannot compete with in vivo expression techniques. In systems based on S30 extracts of Escherichia coli unfavorable side-reactions are involved in limiting protein yields. Therefore, carrying out cell-free reactions at lower temperatures might be beneficial as side reactions should be decreased. In this study we show that by using the 5′-untranslated region of the cold-shock gene cspA from E. coli as mRNA leader in cell-free reactions, the expression temperature can be decreased and simultaneously leads to an increase in protein yields. A compensation for the lower activity of T7 RNA polymerase at lower temperatures enhances protein synthesis even further. Additionally, this 5′-untranslated region also standardizes the optimal expression temperature of different proteins.  相似文献   

13.
The use of cell-free protein synthesis (CFPS) for recombinant protein production is emerging as an important technology. For example, the openness of the cell-free system allows control of the reaction environment to promote folding of disulfide bonded proteins in a rapid and economically feasible format. These advantages make cell-free protein expression systems particularly well suited for producing patient specific therapeutic vaccines or antidotes in response to threats from natural and man-made biological agents and for pharmaceutical proteins that are difficult to produce in living cells. In this work we assess the versatility of modern cell-free methods, optimize expression and folding parameters, and highlight the importance of rationally designed plasmid templates for producing mammalian secreted proteins, fusion proteins, and antibody fragments in our E. coli-based CFPS system. Two unique CFPS platforms were established by developing standardized extract preparation protocols and generic cell-free reaction conditions. Generic reaction conditions enabled all proteins to express well with the best therapeutic protein yield at 710 microg/mL, an antibody fragment at 230 microg/mL, and a vaccine fusion protein at 300 microg/mL; with the majority correctly folded. Better yields were obtained when cell-free reaction conditions were optimized for each protein. Establishing general CFPS platforms enhances the potential for cell-free protein synthesis to reliably produce complex protein products at low production and capital costs with very rapid process development timelines.  相似文献   

14.
15.
Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.  相似文献   

16.
Growths of Escherichia coli strain A19 were investigated in a 5-L fermentor at 37 and 42 degrees C either in Pratt's medium (a standard medium for cell-free protein synthesis using its S30 extract) or in a casamino acids supplemented Pratt's medium (aa-enriched medium). Specific growth rates in Pratt's medium at 37 and 42 degrees C were 0.77 and 0.46 h(-1), respectively, whereas those in the aa-enriched medium at 37 and 42 degrees C were 0.87 and 1.49 h(-1), respectively. The extent of cell-free chloramphenicol acetyltransferase (CAT) synthesis was compared at 37 degrees C incubation (from a plasmid pK7-CAT) for S30 extracts prepared from the cells cultured in the aa-enriched medium at 37 or 42 degrees C. A 40% increase in CAT synthesis occurred when the 42 degrees C/S30 extract was used as compared with 37 degrees C/S30 extract. CAT and both the light and heavy chains (Lc and Hc) of the Fab fragment of an antibody 6D9 were synthesized at 37 degrees C in the cell-free synthesis in the presence of [(14)C]Leu. Their reaction mixtures were subjected to SDS-PAGE autoradiographic analysis. It was found that most of the synthesized proteins were in the soluble fraction when 42 degrees C/S30 extract was used, suggesting that the 42 degrees C/S30 extract contained greater amounts of various protein folding factors. A dialysis membrane minibioreactor with a reaction volume ca. 0.5 mL was handmade by the authors. The advantages of the minibioreactor are a simple configuration, a low manufacturing cost, and the capability of the dialysis membrane replacement. Increased CAT synthesis was also observed for continuous exchange cell-free (CECF) protein synthesis at 37 degrees C when the 42 degrees C/S30 extract was used in the minibioreactor. Some plausible reasons to give higher protein synthesis activity of the 42 degrees C/S30 extract are discussed.  相似文献   

17.
In this study, as a part of our efforts to improve the robustness and economical feasibility of cell-free protein synthesis, we developed a simple method of preparing the cell extracts used for catalyzing cell-free protein synthesis reactions. We found that the high-speed centrifugation, pre-incubation, and dialysis steps of the conventional procedures could be omitted without losing the translational activity of the resulting cell extract. Instead, a simple centrifugation step at low speed (12,000 RCF for 10 min) followed by a brief period of incubation was sufficient for the preparation of an active extract to support cell-free protein synthesis with higher productivity and consistency. Compared to the present standard procedures for the preparation of the S30 extract, the overall cost of the reagents and processing time were reduced by 80 and 60%, respectively.  相似文献   

18.
19.
The protein-synthesizing S30 extract of Escherichia coli contains tRNA, which limits its applications in cell-free protein synthesis. Here, we show that at least Arg- and Ser-acceptor activities can be removed from a standard S30 extract by treatment with an immobilized RNase A resin. This RNase-treated extract exhibits no protein synthesis activity, but regains it when supplied with crude E. coli tRNA and a small amount of human placental RNase inhibitor. The protein synthesis is dependent on the addition of tRNA in the presence of the RNase inhibitor. Chloramphenicol acetyltransferase was synthesized with this system and found to be active.  相似文献   

20.
In this study, we describe a cell-free protein synthesis consolidated with polymerase chain reaction (PCR)-based synthetic gene assembly that allows for streamlined translation of genetic information. In silico-designed fragments of target genes were PCR-assembled and directly expressed in a cell-free synthesis system to generate functional proteins. This method bypasses the procedures required in conventional cell-based gene expression methods, integrates gene synthesis and cell-free protein synthesis, shortens the time to protein production, and allows for facile regulation of gene expression by manipulating the oligomer sequences used for gene synthesis. The strategy proposed herein expands the flexibility and throughput of the protein synthesis process, a fundamental component in the construction of synthetic biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号