首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.  相似文献   

2.
One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.  相似文献   

3.
The ethanolic fermentation of liquid fractions (hydrolysates) issued from dilute acid pre-treatment of olive tree biomass by Pichia stipitis is reported for the first time. On the one side, P. stipitis has been reported as the most promising naturally occurring C5 fermenting microorganism; on the other side, olive tree biomass is a renewable, low cost, and lacking of alternatives agricultural residue especially abundant in Mediterranean countries. The study was performed in two steps. First, the fermentation performance of P. stipitis was evaluated on a fermentation medium also containing the main inhibitors found in these hydrolysates (acetic acid, formic acid, and furfural), as well as glucose and xylose as carbon sources. The effect of inhibitors, individually or in a mixture, on kinetic and yield parameters was calculated. In a second step, hydrolysates obtained from 1% (w/w) sulfuric acid pre-treatment of olive tree biomass at 190°C for 10 min were used as a real fermentation medium with the same microorganism. Due to inhibition, effective fermentation required dilution of the hydrolysate and either overliming or activated charcoal treatment. Results show that ethanol yields obtained from hydrolysates, ranging from 0.35 to 0.42 g/g, are similar to those from synthetic medium, although the process proceeds at lower rates. Inhibiting compounds affect the fermentation performance in a synergistic way. Furfural is rapidly assimilated by the yeast; acetic acid and formic acid concentrations decrease slowly during the process. Activated charcoal or overliming detoxification improve the fermentability of diluted hydrolysates.  相似文献   

4.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

5.
用稀硫酸对玉米芯半纤维素进行水解是一种常用的方法,但是玉米芯半纤维素在水解成木糖等还原糖的同时还产生了糠醛、乙酸和酚类等抑制水解液发酵的毒物。以混合脱毒法为基础,研究活性炭在脱毒过程中的作用。结果表明,有脱毒效果的活性炭种类是GH-13和GH-15,随着活性炭添加量的增大,脱毒效果增强,但木糖损失也随之增多。其中采用5%GH-15时的脱毒效果最佳,该条件下乙酸去除率为24.60%,糠醛去除率达100%,酚类化合物去除效率R280值0.009,而木糖的损失率为23.70%。  相似文献   

6.
Fermentation of wood hydrolysates to desirable products, such as fuel ethanol, is made difficult by the presence of inhibitory compounds in the hydrolysates. Here we present a novel method to increase the fermentability of lignocellulosic hydrolysates: enzymatic detoxification. Besides the detoxification effect, treatment with purified enzymes provides a new way to identify inhibitors by assaying the effect of enzymatic attack on specific compounds in the hydrolysate. Laccase, a phenol oxidase, and lignin peroxidase purified from the ligninolytic basidiomycete fungus Trametes versicolor were studied using a lignocellulosic hydrolysate from willow pretreated with steam and SO2. Saccharomyces cerevisiae was employed for ethanolic fermentation of the hydrolysates. The results show more rapid consumption of glucose and increased ethanol productivity for samples treated with laccase. Treatment of the hydrolysate with lignin peroxidase also resulted in improved fermentability. Analyses by GC-MS indicated that the mechanism of laccase detoxification involves removal of monoaromatic phenolic compounds present in the hydrolysate. The results support the suggestion that phenolic compounds are important inhibitors of the fermentation process. Received: 3 November 1997 / Received revision: 4 February 1998 / Accepted: 6 February 1998  相似文献   

7.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

8.
Chipped tobacco stalks were subjected to steam pretreatment at 205 °C for either 5 or 10 min before enzymatic hydrolysis. Glucose (15.4–17.1 g/l) and xylose (4.5–5.0 g/l) were the most abundant monosaccharides in the hydrolysates. Mannose, galactose and arabinose were also detected. The hydrolysate produced by pretreatment for 10 min contained higher levels of all sugars than the 5 min-pretreated hydrolysate. The amounts of inhibitory compounds found in the hydrolysates were relatively low and increased with increasing pretreatment time. The hydrolysates were fermented with baker's yeast. Ethanol yield, maximum volumetric productivity and specific productivity were used as criteria of fermentability of the hydrolysates. The fermentation of the hydrolysates was only slightly inhibited compared to reference solutions having a similar composition of fermentable sugars. The ethanol yield in the hydrolysates was 0.38–0.39 g/g of initial fermentable sugars, whereas it was 0.42 g/g in the reference. The biomass yield was twofold lower in the hydrolysates than in the reference. The fermentation inhibition caused by the tobacco stalk hydrolysates was less than that caused by sugarcane bagasse hydrolysates obtained under the same hydrolysis conditions.  相似文献   

9.
In order to improve the fermentative efficiency of sugar maple hemicellulosic hydrolysates for fuel ethanol production, various methods to mitigate the effects of inhibitory compounds were employed. These methods included detoxification treatments utilizing activated charcoal, anion exchange resin, overliming, and ethyl acetate extraction. Results demonstrated the greatest fermentative improvement of 50% wood hydrolysate (v/v) by Pichia stipitis with activated charcoal treatment. Another method employed to reduce inhibition was an adaptation procedure to produce P. stipitis stains more tolerant of inhibitory compounds. This adaptation resulted in yeast variants capable of improved fermentation of 75% untreated wood hydrolysate (v/v), one of which produced 9.8 g/l ± 0.6 ethanol, whereas the parent strain produced 0.0 g/l ± 0.0 within the first 24 h. Adapted strains RS01, RS02, and RS03 were analyzed for glucose and xylose utilization and results demonstrated increased glucose and decreased xylose utilization rates in comparison to the wild type. These changes in carbohydrate utilization may be indicative of detoxification or tolerance activities related to proteins involved in glucose and xylose metabolism.  相似文献   

10.
Yeast strains Y1, Y4 and Y7 demonstrated high conversion efficiencies for sugars and high abilities to tolerate or metabolize inhibitors in dilute-acid lignocellulosic hydrolysates. Strains Y1 and Y4 completely consumed the glucose within 24 h in dilute-acid lignocellulosic hydrolysate during in situ detoxification, and the maximum ethanol yields reached 0.49 g and 0.45 g ethanol/g glucose, equivalent to maximum theoretical values of 96% and 88.2%, respectively. Strain Y1 could metabolize xylose to xylitol with a yield of 0.64 g/g xylose, whereas Y4 was unable to utilize xylose as a substrate. Strain Y7 was able to consume sugars (glucose and xylose) within 72 h during hydrolysate in situ detoxification, producing a high ethanol yield (equivalent to 93.6% of the maximum theoretical value). Y1 and Y7 are the most efficient yeast strains yet reported for producing ethanol from non-detoxified dilute-acid lignocellulosic hydrolysates. These findings offer huge potential for improving the economics of bio-ethanol production from lignocellulosic hydrolysates.  相似文献   

11.
The hemicellulose sugar recovery and ethanol production obtained from SO2-catalyzed steam explosion of a mixed white fir (70%) and ponderosa pine (30%) feedstock containing bark (9% dry weight/dry weight) was assessed. More than 90% of the available hemicellulose sugars could be recovered in the hydrolysate obtained after steam explosion at 195 degrees C, 2.38 min, and 3.91% SO2, with 59% of the original hemicellulose sugars detected in a monomeric form. Despite this high sugar recovery, this hydrolysate showed low ethanol yield (64% of theoretical yield) when fermented with a spent sulfite liquor-adapted strain of Saccharomyces cerevisiae. In contrast, most hydrolysates prepared at higher steam explosion severity showed comparable or higher ethanol yields. Furthermore, the hydrolysates prepared from bark-free feedstock showed better fermentability (87% of theoretical yield) despite containing higher concentration of known inhibitors. The ethanol yield from the hydrolysate prepared from a bark-containing wood sample could be improved to 81% by an extra stage acid hydrolysis (121 degrees C for 1 h in 3% sulfuric acid). This extra stage acid hydrolysis and steam explosion at higher severity conditions seem to improve the fermentability of the hydrolysates by transforming certain inhibitory compounds present in the hydrolysates prepared from the bark-containing feedstock and thus lowering their inhibitory effect on the yeast used for the ethanol fermentation.  相似文献   

12.
The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.  相似文献   

13.
This work describes a novel approach to detoxify lignocellulosic hydrolysates and facilitate the analysis of inhibitory compounds, namely supercritical fluid extraction (SFE). The efficiency of the fermentation of lignocellulosic dilute-acid hydrolysates depends upon the composition of the hydrolysate and the organism used. Furthermore, it has been shown that inhibitors in the hydrolysate reduce the fermentation yield. This knowledge has given rise to the need to identify and remove the inhibiting compounds. Sample clean-up or work-up steps, to provide a clean and concentrated sample for the analytical system, facilitate the characterization of inhibitors, or indeed any compound in the hydrolysates. Removal of inhibitors was performed with countercurrent flow supercritical fluid extraction of liquid hydrolysates. Three different groups of inhibitors (furan derivatives, phenolic compounds, and aliphatic acids) and sugars were subsequently analyzed in the hydrolysate, extracted hydrolysate, and extract. The effect of the SFE treatment was examined with respect to fermentability with Saccharomyces cerevisiae. Not only did the extraction provide a clean and concentrated sample (extract) for analysis, but also a hydrolysate with increased fermentability as well as lower concentrations of inhibitors such as phenolics and furan derivatives.  相似文献   

14.
Pretreatment of lignocellulose biomass for biofuel production generates inhibitory compounds that interfere with microbial growth and subsequent fermentation. Remediation of the inhibitors by current physical, chemical, and biological abatement means is economically impractical, and overcoming the inhibitory effects of lignocellulose hydrolysate poses a significant technical challenge for lower-cost cellulosic ethanol production. Development of tolerant ethanologenic yeast strains has demonstrated the potential of in situ detoxification for numerous aldehyde inhibitors derived from lignocellulose biomass pretreatment and conversion. In the last decade, significant progress has been made in understanding mechanisms of yeast tolerance for tolerant strain development. Enriched genetic backgrounds, enhanced expression, interplays, and global integration of many key genes enable yeast tolerance. Reprogrammed pathways support yeast functions to withstand the inhibitor stress, detoxify the toxic compounds, maintain energy and redox balance, and complete active metabolism for ethanol fermentation. Complex gene interactions and regulatory networks as well as co-regulation are well recognized as involved in yeast adaptation and tolerance. This review presents our current knowledge on mechanisms of the inhibitor detoxification based on molecular studies and genomic-based approaches. Our improved understanding of yeast tolerance and in situ detoxification provide insight into phenotype-genotype relationships, dissection of tolerance mechanisms, and strategies for more tolerant strain development for biofuels applications.  相似文献   

15.
Angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated from the Styela clava flesh tissue. Nine proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, pepsin, trypsin, α-chymotrypsin and papain) were used, and their respective enzymatic hydrolysates and an aqueous extract were screened to evaluate their potential ACE inhibitory activity. Among all of the test samples, Protamex hydrolysate possessed the highest ACE inhibitory activity, and the Protamex hydrolysate of flesh tissue showed relatively higher ACE inhibitory activity compared with the Protamex hydrolysate of tunic tissue. We attempted to isolate ACE inhibitory peptide from the Protamex hydrolysate of S. clava flesh tissue using ultrafiltration, gel filtration on a Sephadex G-25 column and high performance liquid chromatography (HPLC) on an ODS column. The purified ACE inhibitory peptide exhibited an IC50 value of 37.1 μM and was identified as non-competitive inhibitor of ACE. Amino acid sequence of the peptide was identified as Ala-His-Ile-Ile-Ile, with a molecular weight 565.3 Da. The results of this study suggested that the peptides derived from enzymes-assisted extracts of S. clava would be useful new antihypertension compounds in functional food resource.  相似文献   

16.
Xylose-containing solutions, obtained from acid prehydrolysis of Eucalyptus wood, were treated with powdered charcoal in order to remove lignin-derived compounds that limit the potential of hydrolysates for making fermentation media. Both the kinetics and equilibrium of adsorption were modelled using equations reported in literature. Charcoal-pretreated hydrolysates were supplemented with nutrients and used for producing xylitol with the yeast Debaryomyces hansenii NRRL Y-7426. The susceptibility to fermentation of culture media made with this procedure was compared with those corresponding to media made from untreated wood hydrolysates or standard xylose solutions. The removal of lignin-derived compounds from hydrolysates was closely related with the efficiency of fermentation.  相似文献   

17.
Lignocellulose is the most abundant biopolymer in the biosphere. It is inexpensive and therefore considered an attractive feedstock to produce biofuels and other biochemicals. Thermochemical and/or enzymatic pretreatment is used to release fermentable monomeric sugars. However, a variety of inhibitory by-products such as weak acids, furans, and phenolics that inhibit cell growth and fermentation are also released. Phenolic compounds are among the most toxic components in lignocellulosic hydrolysates and slurries derived from lignin decomposition, affecting overall fermentation processes and production yields and productivity. Ligninolytic enzymes have been shown to lower inhibitor concentrations in these hydrolysates, thereby enhancing their fermentability into valuable products. Among them, laccases, which are capable of oxidizing lignin and a variety of phenolic compounds in an environmentally benign manner, have been used for biomass delignification and detoxification of lignocellulose hydrolysates with promising results. This review discusses the state of the art of different enzymatic approaches to hydrolysate detoxification. In particular, laccases are used in separate or in situ detoxification steps, namely in free enzyme processes or immobilized by cell surface display technology to improve the efficiency of the fermentative process and consequently the production of second-generation biofuels and bio-based chemicals.  相似文献   

18.
Yu X  Zheng Y  Dorgan KM  Chen S 《Bioresource technology》2011,102(10):6134-6140
This paper explores the use of the hydrolysate from the dilute sulfuric acid pretreatment of wheat straw for microbial oil production. The resulting hydrolysate was composed of pentoses (24.3 g/L) and hexoses (4.9 g/L), along with some other degradation products, such as acetic acid, furfural, and hydroxymethylfurfural (HMF). Five oleaginous yeast strains, Cryptococcus curvatus, Rhodotorula glutinis, Rhodosporidium toruloides, Lipomyces starkeyi, and Yarrowia lipolytica, were evaluated by using this hydrolysate as substrates. The results showed that all of these strains could use the detoxified hydrolysate to produce lipids while except R. toruloides non-detoxified hydrolysate could also be used for the growth of all of the selective yeast strains. C. curvatus showed the highest lipid concentrations in medium on both the detoxified (4.2 g/L) and non-detoxified (5.8 g/L) hydrolysates. And the inhibitory effect studies on C. curvatus indicated HMF had insignificant impacts at a concentration of up to 3 g/L while furfural inhibited cell growth and lipid content by 72.0% and 62.0% at 1 g/L, respectively. Our work demonstrates that lipid production is a promising alternative to utilize hemicellulosic sugars obtained during pretreatment of lignocellulosic materials.  相似文献   

19.
Luo J  Ding L  Qi B  Jaffrin MY  Wan Y 《Bioresource technology》2011,102(16):7437-7442
A two-stage ultrafiltration and nanofiltration (UF/NF) process for the treatment of model dairy wastewater was investigated to recycle nutrients and water from the wastewater. Ultracel PLGC and NF270 membranes were found to be the most suitable for this purpose. In the first stage, protein and lipid were concentrated by the Ultracel PLGC UF membrane and could be used for algae cultivation to produce biodiesel and biofuel, and the permeate from UF was concentrated by the NF270 membrane in the second stage to obtain lactose in retentate and reusable water in permeate, while the NF retentate could be recycled for anaerobic digestion to produce biogas. With this approach, most of dairy wastewater could be recycled to produce reusable water and substrates for bioenergy production. Compared with the single NF process, this two-stage UF/NF process had a higher efficiency and less membrane fouling.  相似文献   

20.
This paper evaluates the fermentative potential of Kluyveromyces marxianus grown in sugarcane bagasse cellulosic and hemicellulosic hydrolysates obtained by acid hydrolysis. Ethanol was obtained from a single glucose fermentation product, whereas xylose assimilation resulted in xylitol as the main product and ethanol as a by-product derived from the metabolism of this pentose. Fermentation performed in a simulated hydrolysate medium with a glucose concentration similar to that of the hydrolysate resulted in ethanol productivity (Qp?=?0.86 g L?1 h?1) that was tenfold higher than the one observed in the cellulosic hydrolysate. However, the use of hemicellulosic hydrolysate favored xylose assimilation in comparison with simulated medium with xylose and glucose concentrations similar to those found in this hydrolysate, without toxic compounds such as acetic acid and phenols. Under this condition, xylitol yield was 53.8 % higher in relation to simulated medium. Thus, the total removal of toxic compounds from the hydrolysate is not necessary to obtain bioproducts from lignocellulosic hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号