首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Geobacter metallireducens was found to be capable of decolorizing several azo dyes with different structures to various extents. Pyruvate, ethanol, acetate, propionate, and benzoate could support 66.3?±?2.6?93.7?±?2.1 % decolorization of 0.1 mM acid red 27 (AR27) in 40 h. The dependence of the specific decolorization rate on AR27 concentration (25 to 800 μM) followed Michaelis–Menten kinetics (K m?=?186.9?±?1.4 μΜ, V max?=?0.65?±?0.02 μmol?mg protein?1 h?1). Enhanced AR27 decolorization was observed with the increase of cell concentrations ranging from 7.5 to 45 mgL?1. AR27 decolorization by G. metallireducens was retarded by the presence of goethite, which competed electrons with AR27 and was reduced to Fe(II). The addition of low concentrations of humic acid (1?100 mgL?1) or 2-hydroxy–1,4-naphthoquinone (0.5?50 μM) could improve the decolorization performance of G. metallireducens. High-performance liquid chromatography analysis suggested reductive pathway to be responsible for decolorization. This was the first study on azo dye decolorization by Geobacter strain and might improve our understanding of natural attenuation and bioremediation of environments polluted by azo dyes.  相似文献   

3.
4.
In the present study, we have constructed an interaction network of 29 antibiotic resistant genes along with 777 interactions in E. coli O157:H7. Gene ontology analysis reveals that 94, 89 and 67 genes have roles in the cellular process, biological process and molecular function respectively. Gene complexes related to tripartite efflux pumps mdtEF-tolC and ABC family efflux pump macAB-tolC play key roles in multidrug efflux systems. It is noteworthy to mention that, 19 genes are involved in multi-efflux pumps and they play a significant role in multidrug resistance (MDR); while 18 genes are vital for fatty acid synthesis. Interestingly, we found that the four genes arnABCD are involved in both MDR and in fatty acid synthesis. Hence these genes could be targeted for new drug discovery. On the whole, our results provide a detailed understanding of the mode of MDR mechanisms in E.coli O157:H7.  相似文献   

5.
The effects of humic acid (HA) on azo dye decolorization by Shewanella oneidensis MR-1 were studied. It was found that HA species isolated from different sources could all accelerate the decolorization of Acid Red 27 (AR27). Anoxic and anaerobic conditions were required for the enhancement of azo dye decolorization by HA. In the presence of 50 mg DOC L−1 Aldrich HA, 15–29% increases in decolorization efficiencies of azo dyes with different structures were achieved in 11 h. The enhancing effects increased with the increase of HA concentrations ranging from 25 to 150 mg DOC L−1, and the decolorization rates were directly proportional to the HA concentrations when they were below 100 mg DOC L−1. Lactate and formate were good electron donors for AR27 decolorization in the presence of HA. Both nitrate (0.1–3.0 mM) and nitrite (0.3–1.2 mM) inhibited AR27 decolorization in the presence of HA, and negligible decolorization was observed before their removal. Soluble FeCl3 could accelerate the decolorization process in the presence of HA, whereas insoluble hematite could not. These findings may affect the understanding of bioremediation of azo dye-polluted environments and help improve the treatment of azo dye wastewaters.  相似文献   

6.
Abstract

To optimize operating conditions for the decolorization of the azo dye Acid Red 18 (AR18) by crude manganese peroxidase (MnP), some important factors affecting enzymatic decolorization were systematically investigated. Under the optimal enzyme reaction conditions, a decolorization efficiency of more than 82.3% was achieved after 60 min treatment. Furthermore, the manganese chelators, malate, tartrate, and lactate were found to be more favorable for the decolorization of AR18 than malonate, acetate, succinate, maleate, oxalate, and citrate. However, the presence of NaCl or Na2SO4 had a negative impact on the decolorization of AR18. The Km and Vmax values of MnP for AR18 were 169.66 μmol L? 1 and 20.63 μmol L? 1 min? 1, respectively. The decolorization of AR18 by MnP followed second-order reaction kinetics with respect to the dye concentration. The decolorization rate constant increased with increasing temperature from 20°C to 35°C, which indicated an activation energy (Ea) of 15.87 kcal mol? 1 and frequency factor (k0) of 1.36 × 108 mg? 1 L min? 1 according to the Arrhenius equation. The results obtained provide experimental data for the application of crude MnP for the decolorization of AR18, and help to elucidate the biochemical mechanism of dye decolorization by the enzyme.  相似文献   

7.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

8.
This study demonstrated the effective application of intracellular azoreductase in mediated decolorization of azo dyes. Using the quinone reductase activity of overexpressed azoreductase AZR and quinone redox mediators, the decolorization performance of the recombinant strain Escherichia coli YB was significantly enhanced. In the presence of 0.2 mM lawsone, 75% acid red 27 (1 mM) was decolorized by E. coli YB in only 2 h, which was the highest bacterial decolorization rate ever reported. Compared to lawsone, menadione was a less effective redox mediator. Glucose was found to be the best carbon source for mediated decolorization by E. coli YB. The recombinant strain could complete four rounds of mediated decolorization repeatedly in 12 h. In addition, a 10-min pre-incubation of E. coli JM109 and activated sludge with 2-methylhydroquinone resulted in great improvement of mediated decolorization performance, which may be applied in practical treatment.  相似文献   

9.
10.
An ascomycetous yeast strain isolated from activated sludge could decolorize Reactive Black 5 azo dye at 200 mg l?1 up to 90 % within 12–18 h under agitated condition. Yeast decolorization ability was investigated at different RB5 concentrations and, at higher dye concentration, 500 mg l?1, the decolorization was found to be 98 % after 36 h incubation time. Extensive decolorization (95–99 %) was obtained in presence of five other azo dyes, Reactive Orange 16, Reactive Red 198, Direct Blue 71, Direct Yellow 12, and Direct Black 22, by isolated yeast. HPLC analysis, UV–vis spectra and colorless biomass obtained after complete decolorization showed that the decolorization occured through a biodegradation mechanism. Decolorization was occurred during the exponential growth phase which is associated to primary metabolism. Laccase production by the yeast cells was not detected. The isolated yeast was characterized according to phenotypical and molecular procedures and was closely related (99 % identity) to Issatchenkia orientalis.  相似文献   

11.
12.
13.
14.
Sulfonated azo dyes were decolorized by two wild type photosynthetic bacterial (PSB) strains (Rhodobacter sphaeroides AS1.1737 and Rhodopseudomonas palustris AS1.2352) and a recombinant strain (Escherichia coli YB). The effects of environmental factors (dissolved oxygen, pH and temperature) on decolorization were investigated. All the strains could decolorize azo dye up to 900 mg l−1, and the correlations between the specific decolorization rate and dye concentration could be described by Michaelis–Menten kinetics. Repeated batch operations were performed to study the persistence and stability of bacterial decolorization. Mixed azo dyes were also decolorized by the two PSB strains. Azoreductase was overexpressed in E. coli YB; however, the two PSB strains were better decolorizers for sulfonated azo dyes.  相似文献   

15.
16.
17.
18.
A 6.3 kb DNA fragment containing genes responsible for azo-dye decolorization was cloned and expressed in Escherichia coli. The resulting recombinant strain E. coli CY1 decolorized 200 mg azo dye (C.I. Reactive Red 22) l–1 at 28 °C at 8.2 mg g cell–1 h–1, while the host (E. coli DH5) had no color-removal activity. Addition of 0.5 mM isopropyl--d-thiogalacto-pyranoside (IPTG) increased the decolorization rate 3.4-fold. The dependence of the decolorization rate on initial dye concentration essentially followed Monod-type kinetics and the maximal rate occurred with the dye at 600 mg l–1. The decolorization rate of E. coli CY1 was optimal at 40 °C and pH 11. Aeration (increased dissolved O2 level) strongly inhibited the decolorization, but decolorization occurred effectively under static incubation conditions (no agitation was employed). The CY1 strain also exhibited excellent stability during repeated-batch operations.  相似文献   

19.
Glycosylation is one of the most abundant protein posttranslational modifications. Protein glycosylation plays important roles not only in eukaryotes but also in prokaryotes. To further understand the roles of protein glycosylation in prokaryotes, we developed a lectin binding assay to screen glycoproteins on an Escherichia coli proteome microarray containing 4,256 affinity-purified E.coli proteins. Twenty-three E.coli proteins that bound Wheat-Germ Agglutinin (WGA) were identified. PANTHER protein classification analysis showed that these glycoprotein candidates were highly enriched in metabolic process and catalytic activity classes. One sub-network centered on deoxyribonuclease I (sbcB) was identified. Bioinformatics analysis suggests that prokaryotic protein glycosylation may play roles in nucleotide and nucleic acid metabolism. Fifteen of the 23 glycoprotein candidates were validated by lectin (WGA) staining, thereby increasing the number of validated E. coli glycoproteins from 3 to 18. By cataloguing glycoproteins in E.coli, our study greatly extends our understanding of protein glycosylation in prokaryotes.  相似文献   

20.
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号