共查询到20条相似文献,搜索用时 9 毫秒
1.
Yue Zhu Hui-ci Yao Hong-yan Lu Xiao-bo Hao Su-qing Xu 《Journal of cellular and molecular medicine》2023,27(2):304-308
Evidence points to the indispensable function of alveolar macrophages (AMs) in normal lung development and tissue homeostasis. However, the importance of AMs in bronchopulmonary dysplasia (BPD) has not been elucidated. Here, we identified a significant role of abnormal AM proliferation and polarization in alveolar dysplasia during BPD, which is closely related to the activation of the IL-33-ST2 pathway. Compared with the control BPD group, AMs depletion partially abolished the epithelialmesenchymal transition process of AECII and alleviated pulmonary differentiation arrest. In addition, IL-33 or ST2 knockdown has protective effects against lung injury after hyperoxia, which is associated with reduced AM polarization and proliferation. The protective effect disappeared following reconstitution of AMs in injured IL-33 knockdown mice, and the differentiation of lung epithelium was blocked again. In conclusion, the IL-33-ST2 pathway regulates AECII transdifferentiation by targeting AMs proliferation and polarization in BPD, which shows a novel strategy for manipulating the IL-33–ST2-AMs axis for the diagnosis and intervention of BPD. 相似文献
2.
3.
Yue Zhu Huici Yao Hongyan Lu Xiaobo Hao Suqing Xu 《Journal of cellular and molecular medicine》2023,27(2):304
Evidence points to the indispensable function of alveolar macrophages (AMs) in normal lung development and tissue homeostasis. However, the importance of AMs in bronchopulmonary dysplasia (BPD) has not been elucidated. Here, we identified a significant role of abnormal AM proliferation and polarization in alveolar dysplasia during BPD, which is closely related to the activation of the IL‐33‐ST2 pathway. Compared with the control BPD group, AMs depletion partially abolished the epithelialmesenchymal transition process of AECII and alleviated pulmonary differentiation arrest. In addition, IL‐33 or ST2 knockdown has protective effects against lung injury after hyperoxia, which is associated with reduced AM polarization and proliferation. The protective effect disappeared following reconstitution of AMs in injured IL‐33 knockdown mice, and the differentiation of lung epithelium was blocked again. In conclusion, the IL‐33‐ST2 pathway regulates AECII transdifferentiation by targeting AMs proliferation and polarization in BPD, which shows a novel strategy for manipulating the IL‐33–ST2‐AMs axis for the diagnosis and intervention of BPD. 相似文献
4.
Gretha J Boersma Richard S Lee Zachary A Cordner Erin R Ewald Ryan H Purcell Alexander A Moghadam Kellie L Tamashiro 《Epigenetics》2014,9(3):437-447
There is ample evidence that exposure to stress during gestation increases the risk of the offspring to develop mood disorders. Brain-derived neurotrophic factor (Bdnf) plays a critical role during neuronal development and is therefore a prime candidate to modulate neuronal signaling in adult offspring of rat dams that were stressed during gestation. In the current study, we tested the hypothesis that alterations in Bdnf expression in prenatally stressed (PNS) offspring are mediated by changes in DNA methylation in exons IV and VI of the Bdnf gene. We observed decreased Bdnf expression in the amygdala and hippocampus of prenatally stressed rats both at weaning and in adulthood. This decrease in Bdnf expression was accompanied by increased DNA methylation in Bdnf exon IV in the amygdala and hippocampus, suggesting that PNS-induced reduction in Bdnf expression may, at least in part, be mediated by increased DNA methylation of Bdnf exon IV. Expression of DNA methyltransferases (Dnmt) 1 and 3a was increased in PNS rats in the amygdala and hippocampus. Our data suggest that PNS induces decreases in Bdnf expression that may at least in part be mediated by increased DNA methylation of Bdnf exon IV. 相似文献
5.
6.
7.
8.
Xichen Bao Haitao Wu Xihua Zhu Xiangpeng Guo Andrew P Hutchins Zhiwei Luo Hong Song Yongqiang Chen Keyu Lai Menghui Yin Lingxiao Xu Liang Zhou Jiekai Chen Dongye Wang Baoming Qin Jon Frampton Hung-Fat Tse Duanqing Pei Huating Wang Biliang Zhang Miguel A Esteban 《Cell research》2015,25(1):80-92
Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation. 相似文献
9.
Yu-Fen Li Yi-Hsiu Hsiao Yi-Hui Lai Yi-Chen Chen Ying-Ju Chen Jian-Liang Chou Michael W Y Chan Yu-Hsing Lin Yung-An Tsou Ming-Hsui Tsai Chien-Kuo Tai 《Epigenetics》2015,10(3):229-236
Oral squamous cell carcinoma (OSCC) constitutes >90% of oral cancers and is the sixth most common malignancy among males worldwide and the fourth leading cause of death due to cancer among males in Taiwan. However, most patients do not receive a diagnosis of OSCC until the late stages, which have a lower survival rate. The use of molecular marker analysis to identify early-stage OSCC would permit optimal timing for treatments and consequently prolong survival. The aim of this study was to identify biomarkers of OSCC using the Illumina GoldenGate Methylation Cancer Panel, which comprised a total of 1,505 CpG sites covering 807 genes. Samples of buccal mucosa resected from 40 OSCC patients and normal tissue samples obtained from 15 patients (normal mucosa from OSCC patients or from patients undergoing surgery unrelated to OSCC) were analyzed. Fms-related tyrosine kinase 4 (FLT4) methylation exhibited a perfect specificity for detecting OSCC, with an area under the receiver operating characteristic curve of 0.91 for both all-stage and early-stage OSCC. Methylation of 7 genes (ASCL1, FGF3, FLT4, GAS7, KDR, TERT, and TFPI2) constitutes the top-20 panels for detecting OSCC. The top-20 panels for detecting early-stage OSCC contain 8 genes: ADCYAP1, EPHA7, FLT4, GSTM2, KDR, MT1A, NPY, and TFPI2. FLT4 RNA expression and methylation level were validated using RT-PCR and a pyrosequencing methylation assay. The median level of FLT4 expression was 2.14-fold for normal relative to OSCC tissue samples (P < 0.0001). Among the 8 pyrosequenced FLT4 CpG sites, methylation level was much higher in the OSCC samples. In conclusion, methylation statuses of selected genes, and especially FLT4, KDR, and TFPI2, might be of great potential as biomarkers for early detection of buccal OSCC. 相似文献
10.
11.
Heather H Burris Andrea A Baccarelli Valeria Motta Hyang-Min Byun Allan C Just Adriana Mercado-Garcia Joel Schwartz Katherine Svensson Martha M Téllez-Rojo Robert O Wright 《Epigenetics》2014,9(8):1083-1091
Worldwide, more than 1 in 10 infants is born prior to 37 weeks gestation. Preterm birth can lead to increased mortality risk and poor life-long health and neurodevelopmental outcomes. Whether environmental risk factors affect preterm birth through epigenetic phenomena is largely unstudied. We sought to determine whether preterm risk factors, such as smoke exposure and education, were associated with cervical DNA methylation in the prostaglandin E receptor 2 gene (PTGER2) and a repetitive element, long interspersed nuclear element-1 Homo sapiens-specific (LINE 1-HS). Second, we aimed to determine whether mid-pregnancy DNA methylation of these regions in cervical samples could predict the length of gestation. We obtained a cervical swab between 16–19 weeks gestation from 80 women participating in a Mexico City birth cohort, used pyrosequencing to analyze DNA methylation of PTGER2 and LINE 1-HS, and examined associations with maternal covariates. We used accelerated failure time models to analyze associations of DNA methylation with the length of gestation. DNA methylation of both sequences was associated with Pap smear inflammation. LINE 1-HS methylation was associated with smoke exposure, BMI and parity. In adjusted models, gestations were 3.3 days longer (95%CI 0.6, 6.0) for each interquartile range of PTGER2 DNA methylation. Higher LINE 1-HS methylation was associated with shorter gestations (-3.3 days, 95%CI -6.5, -0.2). In conclusion, cervical DNA methylation was associated with risk factors for preterm birth and the length of gestation. 相似文献
12.
13.
14.
Yahui Zhou Yiwen Liu Gen Xu Lingjie Liu Huimin Li Yubai Li Jing Yin Xingyun Wang Zhangbin Yu 《Journal of cellular and molecular medicine》2022,26(15):4169
Human breast milk (HBM) effectively prevents and cures neonatal bronchopulmonary dysplasia (BPD). Exosomes are abundant in breast milk, but the function of HBM‐derived exosomes (HBM‐Exo) in BPD is still unclear. This study was to investigate the role and mechanism of HBM‐Exo in BPD. Overall lung tissue photography and H&E staining showed that HBM‐Exo improved the lung tissue structure collapse, alveolar structure disorder, alveolar septum width, alveolar number reduction and other injuries caused by high oxygen exposure. Immunohistochemical results showed that HBM‐Exo improved the inhibition of cell proliferation and increased apoptosis caused by hyperoxia. qPCR and Western blot results also showed that HBM‐Exo improved the expression of Type II alveolar epithelium (AT II) surface marker SPC. In vivo study, CCK8 and flow cytometry showed that HBM‐Exo improved the proliferation inhibition and apoptosis of AT II cells induced by hyperoxia, qPCR and immunofluorescence also showed that HBM‐Exo improved the down‐regulation of SPC. Further RNA‐Seq results in AT II cells showed that a total of 88 genes were significantly different between the hyperoxia and HBM‐Exo with hyperoxia groups, including 24 up‐regulated genes and 64 down‐regulated genes. KEGG pathway analysis showed the enrichment of IL‐17 signalling pathway was the most significant. Further rescue experiments showed that HBM‐Exo improved AT II cell damage induced by hyperoxia through inhibiting downstream of IL‐17 signalling pathway (FADD), which may be an important mechanism of HBM‐Exo in the prevention and treatment of BPD. This study may provide new approach in the treatment of BPD. 相似文献
15.
16.
Peptidome analysis of lung tissues from a hyperoxia‐induced bronchopulmonary dysplasia mouse model: Insights into the pathophysiological process of bronchopulmonary dysplasia 下载免费PDF全文
Jing Yin Xingyun Wang Le Zhang Xing Wang Heng Liu Yin Hu Xiangyun Yan Yongfeng Tang Juan Wang Zhengyin Li Zhangbin Yu Yan Cao Shuping Han 《Journal of cellular physiology》2018,233(10):7101-7112
17.
Li BZ Huang Z Cui QY Song XH Du L Jeltsch A Chen P Li G Li E Xu GL 《Cell research》2011,21(8):1172-1181
Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity. 相似文献
18.
19.