首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV–Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310 K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster’s non-radiative energy transfer theory and were equal to 41.1% and 2.11 nm.The collected UV–Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5 ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand. Molecular modeling results showed that VB6–BSA complex formed not only on the basis of electrostatic forces, but also on the basis of π–π staking and hydrogen bond. There was an excellent agreement between the experimental and computational results. The results presented in this paper, will offer a reference for detailed and systematic studies on the biological effects and action mechanism of small molecules with proteins.  相似文献   

2.
The interactions between loratadine and bovine serum albumin (BSA) and human serum albumin (HSA) were studied using tryptophan fluorescence quenching method. The fluorescence intensity of the two serum albumins could be quenched 70% at the molar ratio [loratadine]:[BSA (or HSA)] = 10:1. In the linear range (0–50 μmol L 1) quenching constants were calculated using Stern–Volmer equation. Temperature in the range 298 K–310 K had a significant effect (p < 0.05) on the two serum albumins through ANOVA analysis and t-test. Furthermore the conformation changes in the interactions were studied using FTIR spectroscopy.  相似文献   

3.
We report the discovery of a series of substituted N′-(2-oxoindolin-3-ylidene)benzohydrazides as inducers of apoptosis using our proprietary cell- and caspase-based ASAP HTS assay. Through SAR studies, N′-(4-bromo-5-methyl-2-oxoindolin-3-ylidene)-3,4,5-trimethoxybenzohydrazide (3g) was identified as a potent apoptosis inducer with an EC50 value of 0.24 μM in human colorectal carcinoma HCT116 cells, more than a 40-fold increase in potency from the initial screening hit N′-(5-bromo-2-oxoindolin-3-ylidene)-3,4,5-trimethoxybenzohydrazide (2a). Compound 3g also was found to be highly active in a growth inhibition assay with a GI50 value of 0.056 μM in HCT116 cells. A group of potentially more aqueous soluble analogs were prepared and found to be highly active. Among them, compound 4e incorporating a methyl piperazine moiety was found to have EC50 values of 0.17, 0.088 and 0.14 μM in human colorectal carcinoma cells HCT116, hepatocellular carcinoma cancer SNU398 cells and human colon cancer RKO cells, respectively. Compounds 3g and 4e were found to function as inhibitors of tubulin polymerization.  相似文献   

4.
A series of new cobalt(III) complexes were prepared. They are [CoL1(py)3]·NO3 (1), [CoL2(bipy)(N3)]·CH3OH (2), [CoL3(HL3)(N3)]·NO3 (3), and [CoL4(MeOH)(N3)] (4), where L1, L2, L3 and L4 are the deprotonated form of N′-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N′-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N′-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2′-bipyridine. The complexes were characterized by infrared and UV–Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L−1, respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L−1. While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.  相似文献   

5.
Two series of novel N-benzyl-N-(X-2-hydroxybenzyl)-N′-phenylureas and thioureas (1a18a; 1b18b) as potential EGFR and HER-2 kinase inhibitors have been discovered. These compounds displayed good EGFR and HER-2 inhibitory activity and the SARs are also been studied. Especially compound 7b demonstrated significant EGFR and HER-2 inhibitory activity (IC50 = 0.08 μM for EGFR and IC50 = 0.35 μM for HER-2). Docking simulation was performed to position compound 7b into the EGFR active site to determine the probable binding conformation and antiproliferative assay results indicating that these series of urea and thioureas own high antiproliferative activity against MCF-7. Above all, thiourea 7b would be a potential anticancer agent deserves further research.  相似文献   

6.
Ellagic acid (EA), a natural polyphenol evidence several pharmacological benefits. The binding profile of EA with human serum albumin (HSA) has been explored and investigated by Isothermal titration calorimetry (ITC), circular dichroism (CD) spectroscopy, time-correlated single-photon counting (TCSPC), absorbance spectroscopy, steady-state fluorescence spectroscopy, and modelling studies. The ITC data analysis revealed the binding Constant (Ka), ΔH, ΔS and ΔG values to be 15.5×104M?1, ?116.2±18.1 Kcal mol?1, ?366 cal mol?1K?1 and ?7.13 Kcal mol?1 respectively with a unique binding site at HSA. EA effectively quenched the intrinsic fluorescence of HSA by static quenching, whereas TCSPC data also revealed association of dynamic quenching also. Thermodynamic analysis confirmed that hydrophobic and mainly hydrogen bonding interaction played important role in stabilizing the HSA-EA complex. It further dictates the binding reaction to be enthalpy driven. The secondary structure of HSA was altered upon binding with EA. CD spectroscopic data indicated the fraction of alpha helicity to be decreased from 52% to 40% upon binding to EA. This study will provide an insight on evaluation of this bioactive interaction during transport and releasing efficiency at the target site in human physiological system since HSA is the most important carrier protein in blood serum.  相似文献   

7.
The effect of a potent antimicrobial compound bearing 1,2,3‐triazole core and a tryptophan tail, triazole‐tryptophan hybrid (TTH), with bovine serum albumin (BSA) have been explored using various spectroscopic and molecular docking methods. Studies revealed that TTH strongly quenches the intrinsic fluorophore of BSA by a static quenching mechanism. Time‐resolved fluorescence spectra further confirmed the involvement of static quenching for TTH–BSA system. The calculated thermodynamic parameters; ΔH, ΔS, and ΔG showed that the binding process was spontaneous, exothermic and entropy driven. Synchronous fluorescence, three‐dimensional (3D) fluorescence and circular dichroism data revealed that TTH induces the structural alteration in BSA and enhances its stability. In silico study of TTH–BSA system showed that it binds with BSA at the site I of subdomain IIA. Both the experimental and in silico study showed that the hydrophobic and electrostatic interactions play a major role in TTH–BSA binding.  相似文献   

8.
The N,N′-disubstituted cyanoguanidine is an excellent bioisostere of the thiourea and ketene aminal functional groups. We report the design and synthesis of a novel class of cyanoguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The SAR studies led to the discovery of compound 4 (BMS-269223, Ki = 6.5 nM, EC2xPT = 32 μM) as a selective, orally bioavailable FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models. The X-ray crystal structure of 4 bound in FXa is presented and key ligand–protein interactions are discussed.  相似文献   

9.
We have discovered several tubulin-active compounds in our previous studies. In the establishment of a compound library of small molecule weight tubulin ligands, 14 new N-3-haloacylaminophenyl-N′-(alkyl/aryl) urea analogs were designed and synthesized. The structure–activity relationship (SAR) analysis revealed that (i) the order of anticancer potency for the 3-haloacylamino chain was following –CH2Br > –CHBrCH3; (ii) the N′-substituent moiety was not essential for the anticancer activity, and a proper alkyl substitution might enhance the anticancer activity. Among these analogs, the compounds 16j bearing bromoacetyl at the N′-end exhibited a potent activity against eight human tumor cell lines, including CEM (leukemia), Daudi (lymphoma), MCF-7 (breast cancer), Bel-7402 (hepatoma), DU-145 (prostate cancer), DND-1A (melanoma), LOVO (colon cancer) and MIA Paca (pancreatic cancer), with the IC50 values between 0.38 and 4.07 μM. Interestingly, compound 16j killed cancer cells with a mechanism independent of the tubulin-based mechanism, indicating a significant change of the action mode after the structure modification.  相似文献   

10.
The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456 μM) and Bacillus subtilis MraY (IC50 386 μM), and which showed antimicrobial activity against B. subtilis (MIC 16 μg/mL). Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, three halogenated fluoresceins were tested as inhibitors of E. coli MraY and E. coli MurG, and phloxine B was identified as an inhibitor of E. coli MraY (IC50 32 μM). Molecular docking of inhibitor structures against the structure of Aquifex aeolicus MraY indicates that phloxine B appears to bind to the Mg2+ cofactor in the enzyme active site, while michellamine B binds to a hydrophobic groove formed between transmembrane helices 5 and 9.  相似文献   

11.
We have developed four 99mTc(CO)3-labeled lipophilic tracers as potential radiolabeling agents for cells based on a hexadecyl tail. 99mTc(CO)3-hexadecylamino-N,N′-diacetic acid (negatively charged), 99mTc(CO)3-hexadecylamino-N-α-picolyl-N′-acetic acid (uncharged), 99mTc(CO)3-N,N′-dipicolylhexadecylamine (positively charged), 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine (positively charged) were prepared in a radiolabeling yield: >90%. Preliminary cell uptake studies were performed in mixed blood cells with or without plasma and were compared with 99mTc-d,l-HMPAO and [18F]FDG. In plasma-free blood cells, maximum uptake (78%) was obtained for 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine after 60 min incubation (compared to 55% and 23% for 99mTc-d,l-HMPAO and [18F]FDG, respectively) while in plasma-rich medium, 99mTc(CO)3-N,N′-dipicolylhexadecylamine was best bound (54%, similar to the binding of 99mTc-d,l-HMPAO). Biodistribution in normal mice showed mainly hepatobiliary clearance of the agents and initial high lung uptake. The radiolabeled compounds showed good blood clearance with maximally 7.9% injected dose per gram at 60 min post injection. While the least lipophilic agent (99mTc(CO)3-N,N′-dipicolylhexadecylamine, log P = 1.3) showed the best cell uptake, there appears to be no direct correlation between lipophilicity and tracer uptake in mixed blood cells. In view of its comparable cell uptake to well known cell labeling agent 99mTc-d,l-HMPAO, 99mTc(CO)3-N,N′-dipicolylhexadecylamine merits further evaluation as a potential cell labeling agent.  相似文献   

12.
AimsIn this study, we examined the inhibitory effects of Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabinol (CBN), the three major cannabinoids, on the activity of human cytochrome P450 (CYP) 3A enzymes. Furthermore, we investigated the kinetics and structural requirement for the inhibitory effect of CBD on the CYP3A activity.Main methodsDiltiazem N-demethylase activity of recombinant CYP3A4, CYP3A5, CYP3A7, and human liver microsomes (HLMs) in the presence of cannabinoids was determined.Key findingsAmong the three major cannabinoids, CBD most potently inhibited CYP3A4 and CYP3A5 (IC50 = 11.7 and 1.65 μM, respectively). The IC50 values of Δ9-THC and CBN for CYP3A4 and CYP3A5 were higher than 35 μM. For CYP3A7, Δ9-THC, CBD, and CBN inhibited the activity to a similar extent (IC50 = 23–31 μM). CBD competitively inhibited the activity of CYP3A4, CYP3A5, and HLMs (Ki = 1.00, 0.195, and 6.14 μM, respectively). On the other hand, CBD inhibited the CYP3A7 activity in a mixed manner (Ki = 12.3 μM). Olivetol partially inhibited all the CYP3A isoforms tested, whereas d-limonene showed lack of inhibition. The lesser inhibitory effects of monomethyl and dimethyl ethers of CBD indicated that the ability of CYP3A inhibition by the cannabinoid attenuated with the number of methylation on the phenolic hydroxyl groups in the resorcinol moiety.SignificanceThis study indicated that CBD most potently inhibited catalytic activity of human CYP3A enzymes, especially CYP3A4 and CYP3A5. These results suggest that two phenolic hydroxyl groups in the resorcinol moiety of CBD may play an important role in the CYP3A inhibition.  相似文献   

13.
《Process Biochemistry》2004,39(11):1599-1605
Fusarium oxysporum F3 produced N-acetyl-β-d-glucosaminidase when grown on wheat bran and chitin as carbon sources in solid-state fermentation. The initial moisture content and pH of growth medium were 65% and 6.0, respectively, and the enzyme yield 23.6 U g−1 carbon source. Two isozymes of N-acetyl-β-d-glucosaminidase, called N-acetyl-β-d-glucosaminidases I and II, were isolated from the culture filtrate of F. oxysporum F3. The filtrate was subjected to ammonium sulphate fractionation followed by anion exchange, gel filtration, hydrophobic interaction and cation exchange chromatography. The optimum pH of isozymes I and II was 5.0 and 6.0, respectively, whereas maximum activity of both isozymes was obtained at 40 °C. The Km of isozymes I and II was 49.6 and 48.6 μM and the Vmax 1.24 and 0.26 μmol mg−1 min−1, respectively, on p-nitrophenyl N-acetyl-β-d-glucosaminide as substrate. The molecular mass of isozymes I and II was calculated to be 67 kDa by SDS–PAGE.  相似文献   

14.
In the present study, we have designed imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives from earlier reported imidazo[1,2-a]pyridine based Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibitors. We synthesized thirty compounds and they were evaluated for MTB PS inhibition study, in vitro anti-TB activities against replicative and non-replicative MTB, in vivo activity using Mycobacterium marinum infected Zebra fish and cytotoxicity against RAW 264.7 cell line. Among them compound 2-methyl-N′-(4-phenoxybenzoyl)benzo[d]imidazo[2,1-b]thiazole-3-carbohydrazide (5bc) emerged as potent compound active against MTB PS with IC50 of 0.53 ± 0.13 μM, MIC of 3.53 μM, 2.1 log reduction against nutrient starved MTB, with 33% cytotoxicity at 50 μM. It also showed 1.5 log reduction of M. marinum load in Zebra fish at 10 mg/kg.  相似文献   

15.
Described is the synthesis of 5-hydroxytryptamine-tetramethylrhodamine (5HT1); an indole nitrogen linked fluorescent conjugate of serotonin. Through a series fluorescence quenching experiments and experiments in the presence of a known competitive antagonist (Granisetron), it was shown that 5HT1 specifically binds to purified homo-pentameric type-3 human serotonin receptors (5HT3A). The measured dissociation constant and Hill coefficient are Kd = 83 ± 3 nM and n = 3.1 ± 0.3, respectively which is indicative of multi-ligand binding and cooperativity similar to that of unconjugated serotonin.  相似文献   

16.
Several 7-aminoamido-pterins were synthesized to evaluate the electronic and biochemical subtleties observed in the ‘linker space’ when N-{N-(pterin-7-yl)carbonylglycyl}-l-phenylalanine 1 was bound to the active site of RTA. The gylcine–phenylalanine dipeptide analogs included both amides and thioamides. Decarboxy gly-phe analog 2 showed a 6.4-fold decrease in potency (IC50 = 128 μM), yet the analogous thioamide 7 recovered the lost activity and performed similarly to the parent inhibitor (IC50 = 29 μM). Thiourea 12 exhibited an IC50 nearly six times lower than the oxo analog 13. All inhibitors showed the pterin head-group firmly bound in their X-ray structures yet the pendants were not fully resolved suggesting that all pendants are not firmly bound in the RTA linker space. Calculated log P values do not correlate to the increase in bioactivity suggesting other factors dominate.  相似文献   

17.
We report the design and synthesis of a novel class of N,N′-disubstituted aroylguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The structure–activity relationships (SAR) investigation led to the discovery of the nicotinoyl guanidine 22 as a potent FXa inhibitor (FXa IC50 = 4 nM, EC2×PT = 7 μM). However, the potent CYP3A4 inhibition activity (IC50 = 0.3 μM) of 22 precluded its further development. Detailed analysis of the X-ray crystal structure of compound 22 bound to FXa indicated that the substituent at the 6-position of the nicotinoyl group of 22 would be solvent-exposed, suggesting that efforts to attenuate the unwanted CYP activity could focus at this position without affecting FXa potency significantly. Further SAR studies on the 6-substituted nicotinoyl guanidines resulted in the discovery of 6-(dimethylcarbamoyl) nicotinoyl guanidine 36 (BMS-344577, IC50 = 9 nM, EC2×PT = 2.5 μM), which was found to be a selective, orally efficacious FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models.  相似文献   

18.
In the present study, we used crystal structure of mycobacterial pantothenate synthetase (PS) bound with 2-(2-(benzofuran-2-ylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl) acetic acid inhibitor for virtual screening of antitubercular compound database to identify new scaffolds. One of the identified lead was modified synthetically to obtain thirty novel analogues. These synthesized compounds were evaluated for Mycobacterium tuberculosis (MTB) PS inhibition study, in vitro antimycobacterial activities and cytotoxicity against RAW 264.7 cell line. Among the compounds tested, N′-(1-naphthoyl)-2-methylimidazo[1,2-a]pyridine-3-carbohydrazide (5b) was found to be the most active compound with IC50 of 1.90 ± 0.12 μM against MTB PS, MIC of 4.53 μM against MTB with no cytotoxicity at 50 μM. The binding affinity of the most potent inhibitor 5b was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

19.
The reaction of thiourea with O-perbenzoylated C-(1-bromo-1-deoxy-β-d-glucopyranosyl)formamide gave the new anomeric spirocycle 1R-1,5-anhydro-d-glucitol-spiro-[1,5]-2-imino-1,3-thiazolidin-4-one. Acylation and sulfonylation with the corresponding acyl chlorides (RCOCl or RSO2Cl where R = tBu, Ph, 4-Me-C6H4, 1- and 2-naphthyl) produced the corresponding 2-acylimino- and 2-sulfonylimino-thiazolidinones, respectively. Alkylation by MeI, allyl-bromide and BnBr produced mixtures of the respective N-alkylimino- and N,N′-dialkyl-imino-thiazolidinones, while reactions with 1,2-dibromoethane and 1,3-dibromopropane furnished spirocyclic 5,6-dihydro-imidazo[2,1-b]thiazolidin-3-one and 6,7-dihydro-5H-thiazolidino[3,2-a]pyrimidin-3-one, respectively. Removal of the O-benzoyl protecting groups by the Zemplén protocol led to test compounds most of which proved micromolar inhibitors of rabbit muscle glycogen phosphorylase b (RMGPb). Best inhibitors were the 2-benzoylimino- (Ki = 9 μM) and the 2-naphthoylimino-thiazolidinones (Ki = 10 μM). Crystallographic studies of the unsubstituted spiro-thiazolidinone and the above most efficient inhibitors in complex with RMGPb confirmed the preference and inhibitory effect that aromatic (and especially 2-naphthyl) derivatives show for the catalytic site promoting the inactive conformation of the enzyme.  相似文献   

20.
A series of Schiff base ligands (L1L5) and their cobalt(II) complexes (15) were designed and synthesized for MEK1 binding experiment. The biological evaluation results showed that Bis(N,N′-disalicylidene)-3,4-phenylenediamine-cobalt(II) 1 and Bis(N,N′-disalicylidene)-1,2-cyclohexanediamine-cobalt(II) 2 are much more effective than the parent Schiff bases (L1 and L2). Importantly, 2 exhibited MEK1 binding affinity with IC5071 nM, which is so far the best result for metal complexes and more potent than U0126 (7.02 μM) and AZD6244 (2.20 μM). Docking study was used to elucidate the binding modes of complex 2 with MEK1. Thus cobalt(II) complex 2 may be further developed as a novel MEK1 inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号