首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background

Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children.

Methodology

Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli.

Principal Findings

We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model.

Conclusion

We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens.  相似文献   

2.

Background

Studies of the immunogenicity of the killed bivalent whole cell oral cholera vaccine, Shanchol, have been performed in historically cholera-endemic areas of Asia. There is a need to assess the immunogenicity of the vaccine in Haiti and other populations without historical exposure to Vibrio cholerae.

Methodology/Principal Findings

We measured immune responses after administration of Shanchol, in 25 adults, 51 older children (6–17 years), and 47 younger children (1–5 years) in Haiti, where cholera was introduced in 2010. A≥4-fold increase in vibriocidal antibody titer against V. cholerae O1 Ogawa was observed in 91% of adults, 74% of older children, and 73% of younger children after two doses of Shanchol; similar responses were observed against the Inaba serotype. A≥2-fold increase in serum O-antigen specific polysaccharide IgA antibody levels against V. cholerae O1 Ogawa was observed in 59% of adults, 45% of older children, and 61% of younger children; similar responses were observed against the Inaba serotype. We compared immune responses in Haitian individuals with age- and blood group-matched individuals from Bangladesh, a historically cholera-endemic area. The geometric mean vibriocidal titers after the first dose of vaccine were lower in Haitian than in Bangladeshi vaccinees. However, the mean vibriocidal titers did not differ between the two groups after the second dose of the vaccine.

Conclusions/Significance

A killed bivalent whole cell oral cholera vaccine, Shanchol, is highly immunogenic in Haitian adults and children. A two-dose regimen may be important in Haiti, and other populations lacking previous repeated exposures to V. cholerae.  相似文献   

3.

Background

During the development of a vaccine, identification of the correlates of protection is of paramount importance for establishing an objective criterion for the protective performance of the vaccine. However, the ascertainment of correlates of immunity conferred by any vaccine is a difficult task.

Methods

While conducting a phase three double-blind, cluster-randomized, placebo-controlled trial of a bivalent killed whole-cell oral cholera vaccine in Kolkata, we evaluated the immunogenicity of the vaccine in a subset of participants. Randomly chosen participants (recipients of vaccine or placebo) were invited to provide blood samples at baseline, 14 days after the second dose and one year after the first dose. At these time points, serum geometric mean titers (GMT) of vibriocidal antibodies and seroconversion rates for vaccine and placebo arms were calculated and compared across the age strata (1 to 5 years, 5 to 15 years and more than 15 years) as well as for all age groups.

Results

Out of 137 subjects included in analysis, 69 were vaccinees and 68 received placebo. There were 5•7 and 5•8 geometric mean fold (GMF) rises in titers to Vibrio cholerae Inaba and Ogawa, respectively at 14 days after the second dose, with 57% and 61% of vaccinees showing a four-fold or greater titer rise, respectively. After one year, the titers to Inaba and Ogawa remained 1•7 and 2•8 fold higher, respectively, compared to baseline. Serum vibriocidal antibody response to V. cholerae O139 was much lower than that to Inaba or Ogawa. No significant differences in the GMF-rises were observed among the age groups.

Conclusions

The reformulated oral cholera vaccine induced a statistically significant anti-O1 Inaba and O1 Ogawa vibriocidal antibody response 14 days after vaccination, which although declined after one year remained significantly higher than baseline. Despite this decline, the vaccine remained protective five years after vaccination.  相似文献   

4.

Background

Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.

Methods

Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.

Findings

Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.

Conclusion

These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.  相似文献   

5.

Objective

We identified a poor clinical response to treatment of cholera with a single 1 g dose of ciprofloxacin, a standard treatment for cholera.

Methods

To determine reasons for the poor response and better therapeutic approaches we examined the minimal inhibitor concentration (MIC, n = 275) and disc-diffusion zone sizes (n = 205) for ciprofloxacin and nalidixic acid of V. cholerae O1 strains isolated in Bangladesh from 1994 to 2012, and reexamined data from 161patients infected with Vibrio cholerae O1 recruited in four clinical trials who received single- or multiple-dose ciprofloxacin for treatment of cholera and compared their clinical response to the V. cholerae O1 susceptibility.

Results

Although all 275 isolates of V. cholerae O1 remained susceptible to ciprofloxacin using standard MIC and disc-diffusion thresholds, the MIC90 to ciprofloxacin increased from 0.010 in 1994 to 0.475 μgm/ml in 2012. Isolates became frankly resistant to nalidixic with the MIC90 increasing from 21 μgm/ml in 1994 to >256 μgm/ml and 166 of 205 isolates from 1994 to 2005 being frankly resistant using disc-diffusion testing. Isolates resistant to nalidixic acid by disc-diffusion testing had a median ciprofloxacin MIC of 0.190 μgm/ml (10th-90th centiles 0.022 to 0.380); nalidixic acid-susceptible isolates had a median ciprofloxacin MIC of 0.002 (0.002 to 0.012).The rate of clinical success with single-dose ciprofloxacin treatment for nalidixic acid-susceptible strains was 94% (61 of 65 patients) and bacteriologic success 97% (63/65) compared to 18% (12/67) and 8% (5/67) respectively with nalidixic acid-resistant strains (P<0.001 for both comparisons). Multiple-dose treatment with ciprofloxacin had 86% and 100% clinical and bacteriologic success rates respectively in patients infected with nalidixic acid-susceptible strains of V. cholerae O1 compared to clinical success 67% and bacteriologic success 60% with nalidixic acid-resistant strains.

Conclusions

Single-dose ciprofloxacin is not effective for treating cholera caused by V. cholerae O1 with diminished susceptibility to ciprofloxacin, and nalidixic acid disc-diffusion testing effectively screens for such isolates.  相似文献   

6.

Background

Despite recent progress in understanding the molecular basis of Vibrio cholerae pathogenesis, there is relatively little knowledge of the factors that determine the variability in human susceptibility to V. cholerae infection.

Methods and Findings

We performed an observational study of a cohort of household contacts of cholera patients in Bangladesh, and compared the baseline characteristics of household members who went on to develop culture-positive V. cholerae infection with individuals who did not develop infection. Although the vibriocidal antibody is the only previously described immunologic marker associated with protection from V. cholerae infection, we found that levels of serum IgA specific to three V. cholerae antigens—the B subunit of cholera toxin, lipopolysaccharide, and TcpA, the major component of the toxin–co-regulated pilus—also predicted protection in household contacts of patients infected with V. cholerae O1, the current predominant cause of cholera. Circulating IgA antibodies to TcpA were also associated with protection from V. cholerae O139 infection. In contrast, there was no association between serum IgG antibodies specific to these three antigens and protection from infection with either serogroup. We also found evidence that host genetic characteristics and serum retinol levels modify susceptibility to V. cholerae infection.

Conclusions

Our observation that levels of serum IgA (but not serum IgG) directed at certain V. cholerae antigens are associated with protection from infection underscores the need to better understand anti–V. cholerae immunity at the mucosal surface. Furthermore, our data suggest that susceptibility to V. cholerae infection is determined by a combination of immunologic, nutritional, and genetic characteristics; additional factors that influence susceptibility to cholera remain unidentified.  相似文献   

7.

Background

Human genetic factors such as blood group antigens may affect the severity of infectious diseases. Presence of specific ABO and Lewis blood group antigens has been shown previously to be associated with the risk of different enteric infections. The aim of this study was to determine the relationship of the Lewis blood group antigens with susceptibility to cholera, as well as severity of disease and immune responses to infection.

Methodology

We determined Lewis and ABO blood groups of a cohort of patients infected by Vibrio cholerae O1, their household contacts, and healthy controls, and analyzed the risk of symptomatic infection, severity of disease if infected and immune response following infection.

Principal Findings

We found that more individuals with cholera expressed the Le(a+b−) phenotype than the asymptomatic household contacts (OR 1.91, 95% CI 1.03–3.56) or healthy controls (OR 1.90, 95% CI 1.13–3.21), as has been seen previously for the risk of symptomatic ETEC infection. Le(a–b+) individuals were less susceptible to cholera and if infected, required less intravenous fluid replacement in hospital, suggesting that this blood group may be associated with protection against V. cholerae O1. Individuals with Le(a–b−) blood group phenotype who had symptomatic cholera had a longer duration of diarrhea and required higher volumes of intravenous fluid replacement. In addition, individuals with Le(a–b−) phenotype also had lessened plasma IgA responses to V. cholerae O1 lipopolysaccharide on day 7 after infection compared to individuals in the other two Lewis blood group phenotypes.

Conclusion

Individuals with Lewis blood type Le(a+b−) are more susceptible and Le(a–b+) are less susceptible to V. cholerae O1 associated symptomatic disease. Presence of this histo-blood group antigen may be included in evaluating the risk for cholera in a population, as well as in vaccine efficacy studies, as is currently being done for the ABO blood group antigens.  相似文献   

8.

Objective

Pneumococcal conjugate vaccines reduce the prevalence of vaccine serotypes carried in the nasopharynx. Because this could alter carriage of other potential pathogens, we assessed the nasopharyngeal microbiome of children who had been vaccinated with 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PHiD-CV).

Methods

Profiles of the nasopharyngeal microbiota of 60 children aged 12-59 months, who had been randomized to receive 2 doses of PHiD-CV (n=30) or Hepatitis A vaccine (n=30) 60 days apart, were constructed by 16S rRNA gene pyrosequencing of swab specimens collected before vaccination and 180 days after dose 1.

Results

Prior to vaccination, Moraxella catarrhalis (median of 12.3% of sequences/subject), Streptococcus pneumoniae (4.4%) and Corynebacterium spp. (5.6%) were the most abundant nasopharyngeal bacterial species. Vaccination with PHiD-CV did not significantly alter the species composition, abundance, or prevalence of known pathogens. Distinct microbiomes were identified based on the abundances of Streptococcus, Moraxella, and Haemophilus species. These microbiomes shifted in composition over the study period and were independent of age, sex, school attendance, antibiotic exposure, and vaccination.

Conclusions

Vaccination of children with two doses of PHiD-CV did not significantly alter the nasopharyngeal microbiome. This suggests limited replacement carriage with pathogens other than non-vaccine strains of S. pneumoniae.

Trial Registration

clinicaltrials.gov NCT01028326  相似文献   

9.

Background

A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice.

Methodology/principals findings

In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%–48%). Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection.

Conclusion/significance

Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate.  相似文献   

10.

Background

Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice.

Methodology/Principal Findings

Adenoviral vectored vaccine (rAdV-SjTPI.opt) and recombinant protein vaccine (rSjTPI) were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice.

Conclusions/Significance

The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China.  相似文献   

11.
Vibrio cholerae causes cholera, an enteric disease of humans that is a worldwide problem. The O1 serogroup of Vibrio cholerae contains two predominant serotypes (Inaba and Ogawa) of LPS, a proven protective antigen for humans and experimental animals. We generated B‐cell hybridomas from mice immunized with either: (i) two doses of purified Inaba LPS; (ii) two doses of an Inaba hexasaccharide conjugate (terminal six perosamine bound to a protein carrier), (iii) four doses of purified Inaba LPS; or (iv) a low dose of purified Inaba LPS followed by a booster with the Inaba conjugate. We showed previously that the first and third immunization protocols induce vibriocidal antibodies, as does the fourth; the second protocol induces antibodies that bind Inaba and Ogawa LPS but are not vibriocidal. Anti‐LPS mAbs derived from hybridomas resulting from each immunization protocol were characterized for binding to Inaba and Ogawa LPS, their vibriocidal or protective capacity, and the variable heavy chain family they expressed. LPS immunogens selected different LPS‐specific B cells expressing six different Vh chain families. Protective and non‐protective mAbs could express variable regions from the same family. One mAb was specific for Inaba LPS, the other mAbs were cross‐reactive with both LPS serotypes. Sequence comparison suggests that the pairing of a specific light chain, somatic mutation, or the specific VDJ recombination can modulate the protective capacity of mAbs that express a common variable heavy chain family member.  相似文献   

12.

Background

Illness associated with Respiratory Syncytial Virus (RSV) remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F) of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity.

Methodology and Principal Findings

BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF) protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA), stable emulsion (SE), GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats.

Conclusions/Significance

These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.  相似文献   

13.

Background

Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs).

Methodology/Principal Findings

Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid.

Conclusion/Significance

The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.  相似文献   

14.

Background

Mutations in LRRK2 are related to certain forms of Parkinson’s disease and, possibly, to the pathogenesis of Crohn’s disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses.

Methods

Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA).

Results

The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls.

Conclusions

Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls.  相似文献   

15.

Introduction

Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008.

Principal Findings

Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began.

Discussion

Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives.  相似文献   

16.

Background

Mucosal Associated Invariant T (MAIT) cells are innate-like T cells found in abundance in the intestinal mucosa, and are thought to play a role in bridging the innate-adaptive interface.

Methods

We measured MAIT cell frequencies and antibody responses in blood from patients presenting with culture-confirmed severe cholera to a hospital in Dhaka, Bangladesh at days 2, 7, 30, and 90 of illness.

Results

We found that MAIT (CD3+CD4CD161hiVα7.2+) cells were maximally activated at day 7 after onset of cholera. In adult patients, MAIT frequencies did not change over time, whereas in child patients, MAITs were significantly decreased at day 7, and this decrease persisted to day 90. Fold changes in MAIT frequency correlated with increases in LPS IgA and IgG, but not LPS IgM nor antibody responses to cholera toxin B subunit.

Conclusions

In the acute phase of cholera, MAIT cells are activated, depleted from the periphery, and as part of the innate response against V. cholerae infection, are possibly involved in mechanisms underlying class switching of antibody responses to T cell-independent antigens.  相似文献   

17.

Background

One of the most common causes of morbidity and mortality in children with sickle cell disease (SCD) is infection with the pneumococcal bacterium (Streptococcus pneumoniae). Unfortunately, the polysaccharide-conjugate vaccine appears to be less effective in individuals with SCD when compared to the general population. We sought to better understand the relative efficacy of pneumococcal vaccination in a SCD mouse challenge model.

Methods

Transgenic control and SCD mice were monitored for mortality after intranasal pneumococcal infection or pneumococcal vaccination with Prevnar-13 and type-matched challenge. Anti-pneumococcal antibody titers were measured by ELISA and opsonophagocytosis was measured in vitro.

Results

Mortality after pneumococcal infection was similar between control and SCD mice. However, after three intramuscular polysaccharide-conjugate vaccinations, all control mice were protected following high-dose intranasal infection, whereas 60% of SCD mice died. Anti-pneumococcal antibody titers showed initial IgG and IgM responses in both groups, but waning titers were observed in the SCD group, even after boosting. When functionally assayed in vitro, serum from SCD mice 13 weeks after a second booster shot maintained little to no ability to opsonize pneumococci, while serum from control mice sustained a significantly higher capacity opsonization. Thus, it appears that SCD mice do not maintain antibody responses to pneumococcal polysaccharides after Prevnar-13 vaccination, thereby leaving them susceptible to mortality after type-matched infection.

Conclusion

Our results emphasize the need to better understand the correlates of immune protection in SCD so that pneumococcal vaccines can be improved and mortality reduced in this susceptible population.  相似文献   

18.

Background

A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use.

Methods

We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15μg, 30μg, or 60μg respectively of VMP001, all formulated in 500μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.

Results

The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.

Significance

This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.  相似文献   

19.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

20.

Background

Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels.

Methods

Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier.

Results

The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster.

Conclusions

Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号