首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding superoxide dismutase was revealed in the genome of the thermoacidophilic crenarchaeon Acidilobus saccharovorans. A recombinant expression vector was constructed and transformed into E. coli cells. The novel recombinant superoxide dismutase was purified and characterized. The enzyme was shown to be an iron-dependent super-oxide dismutase able to bind various bivalent metals in the active site. According to differential scanning calorimetric data, the denaturation temperature of the enzyme is 107.3°C. The maximal activity of the Fe(II) reconstituted enzyme defined by xanthine oxidase assay is 1700 U/mg protein. Study of the thermal stability of the superoxide dismutase samples with various metal contents by tryptophan fluorescence indicated that the thermal stability and activity of the enzyme directly depend on the nature of the reconstituted metal and the degree of saturation of binding sites.  相似文献   

2.
Archaeoglobus fulgidus is a hyperthermophilic sulphate-reducing archaeon. It has an optimum growth temperature of 83 degrees C and is described as a strict anaerobe. Its genome lacks any homologue of canonical superoxide (O2.-) dismutases. In this work, we show that neelaredoxin (Nlr) is the main O2.- scavenger in A. fulgidus, by studying both the wild-type and recombinant proteins. Nlr is a 125-amino-acid blue-coloured protein containing a single iron atom/molecule, which in the oxidized state is high spin ferric. This iron centre has a reduction potential of +230 mV at pH 7.0. Nitroblue tetrazolium-stained gel assays of cell-soluble extracts show that Nlr is the main protein from A. fulgidus which is reactive towards O2.-. Furthermore, it is shown that Nlr is able to both reduce and dismutate O2.-, thus having a bifunctional reactivity towards O2.-. Kinetic and spectroscopic studies indicate that Nlr's superoxide reductase activity may allow the cell to eliminate O2.- quickly in a NAD(P)H-dependent pathway. On the other hand, Nlr's superoxide dismutation activity will allow the cell to detoxify O2.- independently of the cell redox status. Its superoxide dismutase activity was estimated to be 59 U mg-1 by the xanthine/xanthine oxidase assay at 25 degrees C. Pulse radiolysis studies with the isolated and reduced Nlr proved unambiguously that it has superoxide dismutase activity; at pH 7.1 and 83 degrees C, the rate constant is 5 x 106 M-1 s-1. Besides the superoxide dismutase activity, soluble cell extracts of A. fulgidus also exhibit catalase and NAD(P)H/oxygen oxidoreductase activities. By putting these findings together with the entire genomic data available, a possible oxygen detoxification mechanism in A. fulgidus is discussed.  相似文献   

3.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

4.
Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a key enzyme in purine degradation where it oxidizes hypoxanthine to xanthine and xanthine to uric acid. Electrons released from these substrates are either transferred to NAD+ or to molecular oxygen, thereby yielding NADH or superoxide, respectively. By an alternative activity, AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD+ and superoxide. Here we demonstrate that in comparison to the specific activity with xanthine as substrate, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15-times higher accompanied by a doubling in superoxide production. The observation that NAD+ inhibits NADH oxidase activity of AtXDH1 while NADH suppresses NAD+-dependent xanthine oxidation indicates that both NAD+ and NADH compete for the same binding-site and that both sub-activities are not expressed at the same time. Rather, each sub-activity is determined by specific conditions such as the availability of substrates and co-substrates, which allows regulation of superoxide production by AtXDH1. Since AtXDH1 exhibits the most pronounced NADH oxidase activity among all xanthine dehydrogenase proteins studied thus far, our results imply that in particular by its NADH oxidase activity AtXDH1 is an efficient producer of superoxide also in vivo.  相似文献   

5.
MnO2 reacted with desferrioxamine B yielding a green, water-soluble complex, with absorption maxima at 315 and 635 nm whose extinction coefficients were 925 and 60 M-1 cm-1, respectively. Increasing the proportion of ligand to metal increased both color yield and ability to scavenge O2-, with maximal color yield and activity being achieved at a 1:1 ratio. The complex catalyzed the dismutation of O2- and 1 microM was equivalent to 1 unit of superoxide dismutase activity in the xanthine oxidase-cytochrome c assay. The complex thus exhibited approximately 0.1% as much activity as did the manganese-containing superoxide dismutase, on the basis of manganese content. The activity of the complex was not suppressed by bovine serum albumin or by the soluble proteins extracted from Lactobacillus plantarum. In contrast, the activities of Cu(II) complexes of salicylate or Gly-His-Lys were suppressed by these proteins.  相似文献   

6.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

7.
We examined the protective effect of cellular superoxide dismutase against extracellular hydrogen peroxide in cultured bovine aortic endothelial cells. 51Cr-labeled cells were exposed to hydrogen peroxide generated by glucose oxidase/glucose. Glucose oxidase caused a dose-dependent increase of 51Cr release. Pretreatment with diethyldithiocarbamate enhanced injury induced by glucose oxidase, corresponding with the degree of inhibition of endogenous superoxide dismutase activity. Inhibition of cellular superoxide dismutase by diethyldithiocarbamate was not associated either with alteration of other antioxidant defenses or with potentiation of nonoxidant injury. Enhanced glucose oxidase damage by diethyldithiocarbamate was prevented by chelating cellular iron. Inhibition of cellular xanthine oxidase neither prevented lysis by hydrogen peroxide nor diminished enhanced susceptibility by diethyldithiocarbamate. These results suggest that, in cultured endothelial cells: 1) cellular superoxide is involved in mediating hydrogen peroxide-induced damage; 2) superoxide, which would be generated upon exposure to excess hydrogen peroxide independently of cellular xanthine oxidase, promotes the Haber-Weiss reaction by initiating reduction of stored iron (Fe3+) to Fe2+; 3) cellular iron catalyzes the production of a more toxic species from these two oxygen metabolites; 4) cellular superoxide dismutase plays a critical role in preventing hydrogen peroxide damage by scavenging superoxide and consequently by inhibiting the generation of the toxic species.  相似文献   

8.
Post-translational modifications of proteins control many biological processes through the activation, inactivation, or gain-of-function of the proteins. Recent developments in mass spectrometry have enabled detailed structural analyses of covalent modifications of proteins and also have shed light on the post-translational modification of superoxide dismutase. In this review, we introduce some covalent modifications of superoxide dismutase, nitration, phosphorylation, glutathionylaion, and glycation. Nitration has been the most extensively analyzed modification both in vitro and in vivo. Reaction of human Cu,Zn superoxide dismutase (SOD) with reactive nitrogen species resulted in nitration of a single tryptophan residue to 6-nitrotryptophan, which could be a new biomarker of a formation of reactive nitrogen species. On the other hand, tyrosine 34 of human MnSOD was exclusively nitrated to 3-nitrotyrosine and almost completely inactivated by the reaction with peroxynitrite. The nitrated MnSOD has been found in many diseases caused by ischemia/reperfusion, inflammation, and others and may have a pivotal role in the pathology of the diseases. Most of the post-translational modifications have given rise to a reduced activity of SOD. Since phosphorylation and nitration of SOD have been shown to have a possible reversible process, these modifications may be related to a redox signaling process in cells. Finally we briefly introduce a metal insertion system of SOD, focusing particularly on the iron misincorporation of nSOD, as a part of post-translational modifications.  相似文献   

9.
With the aim of developing a novel superoxide dismutase (SOD) activity assay, a series of polymethinium salts (streptocyanines) were prepared and studied for their ability to be reduced by superoxide radical anion generated either from the pyrogallol autoxidation or by the xanthine oxidase-catalyzed oxidation of xanthine. The nonacarbon chain streptocyanine 9Cl(NEt2)2 was found to be relatively stable in neutral buffered aqueous solutions, to be reduced at a significant rate by superoxide, and addition of iron-dependent superoxide dismutase (Fe-SOD) prevented its bleaching, thus constituting a good candidate as a possible superoxide indicator in a spectrophotometric SOD assay. The values found to be optimal for a SOD assay were defined as pH 7.4, wavelength 728 nm, xanthine and xanthine oxidase as superoxide source, and a reaction time of 5 min. Based on the color change caused by the superoxide-induced bleaching of the streptocyanine, a qualitative colorimetric method for the SOD activity detection is proposed, enabling visual detection within a short time without any instrument.  相似文献   

10.
A direct and rapid SDS-PAGE staining method for in situ identification of activity and molecular weight of superoxide dismutase following denaturing treatment has been developed. This technique was based on the removal of SDS after SDS-PAGE and two-step staining procedures of the SDS-polyacrylamide gel to present the achromatic activity-zones of the enzymes. We demonstrated that the detection sensitivity of SDS-PAGE staining method was the same as the traditional xanthine oxidase-NBT solution assay. Through the SDS-PAGE staining method, three classes of superoxide dismutases with distinct molecular sizes were identified in situ. Moreover, activity of copper and zinc containing superoxide dismutase in crude extracts of Escherichia coli and Actinobacillus pleuropneumoniae was significantly enhanced using the two-step staining procedure.  相似文献   

11.
This paper describes a global investigation of the components of Fasciola hepatica excretory-secretory (ES) products by a proteomic approach. Despite the absence of a F. hepatica genome sequencing project we have shown that it was possible to identify 29 of the 60 prominent proteins found using two-dimensional gel electrophoresis. As well as cathepsin L proteases, a number of enzymes implicated in parasite protection from the host immune system were also found to be present in relatively large abundance. These included superoxide dismutase, thioredoxin peroxidase, glutathione S-transferases and fatty acid binding proteins, all of which may play a part in the detoxification of reactive oxygen intermediates. Interestingly, ovine superoxide dismutase was the only protein from the host identified on the gel. We suggest that the relative abundance and protective nature of the components of the ES products of this organism play an important role in its survival within the host. The precise identification, to individual NCBI database entries, of a number of glutathione S-transferases and cathepsin Ls from F. hepatica, by peptide mass fingerprinting, was hampered by multi-database submissions of the two protein superfamilies from this organism.  相似文献   

12.
发展了一条从红细胞裂解液中同时制备超氧化物歧化酶(SOD)、过氧化氢酶和血红蛋白的新工艺。采用0 75 %的聚乙二醇600作为层析伴侣,使血红蛋白直接流过阴离子交换层析柱,同时吸附SOD和过氧化氢酶。经过梯度洗脱获得SOD和过氧化氢酶组分,再经过疏水性相互作用层析与凝胶过滤层析相串联,使SOD和过氧化氢酶得到纯化。纯化后的SOD和过氧化氢酶的比活力分别达到15932u/mg和65918u/mg ,血红蛋白的纯度达到99.9%以上。总回收率为:SOD ,47.4% ;过氧化氢酶,29.6% ;血红蛋白,88.7%。  相似文献   

13.
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida.  相似文献   

14.
Bacterial DNA was incubated with xanthine plus xanthine oxidase plus excess iron as an oxygen-species-generating system, and DNA injury was measured by agarose gel electrophoresis and by the ability of the DNA to transform competent bacteria. After 5 to 10 min incubation, the covalently closed circular form of plasmid DNA was converted into the open circular form, and after 30 min, to some extent into the linear form. Biological activity, measured as the number of transformed bacteria, decreased rapidly after 10 min incubation. Incubation of chromosomal DNA with the enzymic oxygen-species-generating system resulted in the degradation of DNA to small fragments within about 1 h. Excess iron was essential for the damaging effect of xanthine plus xanthine oxidase. Damage to DNA could be prevented by oxygen scavengers such as superoxide dismutase, catalase, mannitol and thiourea. Our results suggest that hydroxyl radical is the injurious oxidant for bacterial DNA, and that it can mediate physicochemical as well as biological alterations in DNA.  相似文献   

15.
The rate of O2 radical generation in microsomal membranes (VO2), the activity of cytosol superoxide dismutase (Cu, ZnSOD) and mitochondrial superoxide dismutase (MnSOD), and the activity of xanthine oxidizing system (XO) after a two-hour ischemia following a 24-hour reoxygenation of the rat liver were investigated. The high value of VO2, as compared to Cu, ZnSOD activity, may result in regulation disorders in O2-SOD system during ischemia. During reoxygenation, xanthine oxidizing system in combination with lowered Cu, ZnSOD activity may substantially contribute to the disturbance.  相似文献   

16.
声化学诱导艾氏腹水瘤细胞凋亡机制初探   总被引:15,自引:0,他引:15  
刘全宏  刘书瑗  齐浩  王攀  汤薇  张坤  代乐  史秀超 《动物学报》2005,51(6):1073-1079
本研究采用频率1.43MHz,声强3W/cm2的高频聚焦超声处理艾氏腹水肿瘤细胞,研究超声激活血卟啉诱导艾氏腹水肿瘤细胞凋亡的途径及其与癌细胞内的氧自由基之间的关系。通过细胞免疫组织化学方法检测与癌细胞凋亡相关的Bax,细胞色素c和caspase-3蛋白的动态表达,黄嘌呤氧化酶法检测超氧化物歧化酶活性变化,硫代巴比妥酸法检测膜脂质过氧化物的含量。结果发现超声加血卟啉处理1h,癌细胞胞浆中的三种促凋亡蛋白表达增多,3h时表现为高表达;处理1h的癌细胞,超氧化物歧化酶活性下降,膜脂质过氧化物增多。研究结果表明超声激活血卟啉诱导艾氏腹水肿瘤细胞凋亡可能通过线粒体途径,且与癌细胞受损后产生的氧自由基有关。  相似文献   

17.
Rat heart ornithine decarboxylate activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase has a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2- on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect upon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rats to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

18.
The depletion of superoxide dismutase in the liver of rats held on a copper-deficient diet for 8 weeks induces two profound modifications in microsomal membrane characteristics. These membranes show: (1) a low degree of peroxidation induced in vitro by both endogenous (NADPH and tert-butylhydroperoxide) and exogenous sources (xanthine/xanthine oxidase) of oxygen radicals as revealed by malondialdehyde and diene-conjugate production; (2) a strong decrease of polyunsaturated and an increase of monounsaturated fatty acid content. These alterations are similar to those found in microsomal membranes from fast-growing hepatomas which exhibit a pronounced saturation of fatty acid pattern and lack superoxide dismutase. These observations support the hypothesis that during hepatocarcinogenesis the loss of superoxide dismutase causes an oxidative stress that increases cellular membrane lipid peroxidation, as a consequence of which the cell responds by synthesizing more saturated fatty acids that permanently modify cell membrane structure and properties.  相似文献   

19.
Citrate-Fe3+, reportedly a physiological chelate, exhibits superoxide dismutaselike activity, as evidenced by the inhibition of xanthine oxidase-dependent cytochrome c reduction; the dismutation of xanthine oxidase-generated superoxide to hydrogen peroxide and oxygen, and the enhanced disproportionation of potassium superoxide. The catalytic activity of citrate-Fe3+ corresponds, on a molar basis, to 0.03% of that of copper- and zinc-containing superoxide dismutase. Although weak, this activity enables citrate-Fe3+ to inhibit superoxide and ADP-Fe3+ -dependent peroxidation of extracted microsomal lipids. Also, the dismutase activity of citrate-Fe3+ interferes with its ability to promote lipid peroxidation. It is proposed that chelation of Fe3+ by citrate may represent a protective mechanism against the deleterious consequences of superoxide generation.  相似文献   

20.
Cutaneous and mucous epithelia of various organs of laboratory rodents were analysed histochemically for reactive oxygen species (ROS)-generating oxidases using cerium methods. High activities of xanthine oxidase and also superoxide dismutase were present in orthokeratotic stratified squamous epithelia of skin, lips, esophagus and forestomach and parakeratotic keratinizing stratified epithelia of vagina, tongue and penis. Moreover, activity was found in simple epithelium of the uterus and intestine of rats, mice and guinea-pigs. Moderate activities of monoamine oxidase and D-amino acid oxidase were only seen in enterocytes of large and small intestine, whereas alpha-hydroxy acid oxidase could not be detected at all. With the use of specific inhibitors for superoxide anions-producing xanthine oxidase and H2O2-generating superoxide dismutase it was shown that epithelial cells of all studied external and internal surface epithelia contain a highly effective xanthine oxidase-superoxide dismutase system. It is hypothesized that this system might have a general microbicidal function and might play a special role in tumor promotion of the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号