首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
  • 1.1. Homogenates of gills from the freshwater shrimp M. amazonicum exhibit the following ATPase activities: (i) a basal, Mg2+-dependent ATPase; (ii) an ouabain-sensitive, Na+ + K+-stimulated ATPase; (iii) an ouabain-insensitive, Na+-stimulated ATPase; and (iv) an ouabain-insensitive, K+-stimulated ATPase.
  • 2.2. K+ suppresses the Na+-stimulated ATPase activity in a mixed-type kind of inhibition, whereas Na+ does not exert any noticeable effect on the K+-stimulated ATPase activity.
  • 3.3. The Na+- and the K+-stimulated ATPase activities are totally inhibited by 5 mM ethacrynic acid in the incubation medium.
  • 4.4. The Na+- and the K+-stimulated ATPase activities are not expressions of the activation of a Ca-ATPase.
  • 5.5. The possible localization and roles of the described ATPases within the gill epithelium are briefly discussed and evaluated.
  相似文献   

3.
  • 1.1. Specific activity and kinetic characteristics of the (Na+ + K+)ATPase have been investigated in the gill epithelium of the hyper-hypoosmoregulator crab Uca minax.
  • 2.2. (Na+ +K+)ATPase activity is shown to be at least three times higher in the posterior gills.
  • 3.3. The kinetic study supports the hypothesis of the existence of two different (Na+ + K+)ATPases: the enzyme activity in the posterior gills could be involved in the transepithelial transport of Na+ while the activity of the anterior gills could be responsible for the intracellular regulation of Na+ and K+.
  • 4.4. Significant and specific changes in (Na+ +K+)ATPase activity occur upon acclimation to media of various salinities.
  相似文献   

4.
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.  相似文献   

5.
6.
Our previous studies showed that when ethylmercurithiosalicylate (thimerosal) interacts with the transport ATPase of the guinea pig kidney under specified conditions, the Na+ + K+-dependent ATPase activity is inhibited, while the Na+-dependent ATPase, the Na+ + ATP-dependent phosphorylation of the enzyme, and the K+-dependent discharge of the phosphoenzyme seem to be unaffected. Here we describe other properties of the thimerosal-treated enzyme: Na+-dependent ADP-ATP exchange, Na+-dependent UTPase, and K+-dependent p-nitrophenylphosphatase activities of the modified enzyme are not inhibited. Kinetics of the Na+ effect on the UTPase activities of the native and the modified enzyme are the same. However, K+ has a greater inhibitory effect on the Na+-UTPase of the modified enzyme than on the Na+-UTPase of the native enzyme. The increase in the apparent affinity of the thimerosal-treated enzyme for K+ is also evident from the kinetics of the K+ effect on p-nitrophenylphosphatase. Neither the native enzyme nor the modified enzyme catalyzes a P1-ATP exchange. The uninhibited activities of the thimerosal-treated enzyme are sensitive to ouabain. These data provide further support for those reaction mechanisms in which the existence of two ATP sites within the enzyme is assumed.  相似文献   

7.
8.
The addition of LiCl stimulated the (Na++K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg. ATP concentrations. Apparent affinities for Li+ were estimated at the α-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the β-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent KM for Mg· ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the α-sites on the enzyme through which K+ decreases the apparent affinity for Mg·ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane NA+/K+ pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.  相似文献   

9.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

10.
Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type–specific tubulin glutamylation patterns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or expression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamylase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamylation in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis.  相似文献   

11.
In the present paper we studied the involvement of the phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway in (Na+ + K+)ATPase stimulation by heme in Leishmania amazonensis promastigotes. Heme stimulated the PKC-like activity with a concentration of 50 nM. Interestingly, the maximal stimulation of the PKC-like activity promoted by phorbol ester was of the same magnitude promoted by heme. However, the stimulatory effect of heme is completely abolished by ET-18-OCH3 and U73122, specific inhibitors of PI-PLC. (Na+ + K+)ATPase activity is increased in the presence of increased concentrations of heme, being maximally affected at 50 nM. This effect was completely reversed by 10 nM calphostin C, an inhibitor of PKC. Thus, the effect of 50 nM heme on (Na+ + K+)ATPase activity is completely abolished by ET-18-OCH3 and U73122. Taken together, these results demonstrate that the heme receptor mediates the stimulatory effect of heme on the (Na+ + K+)ATPase activity through a PI-PLC/PKC signaling pathway.  相似文献   

12.
We examined the metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to 20 h exposure to severe hypoxia (0.37 ± 0.19 mg O2/l; 4.6% air saturation) or 8 h severe hypoxia followed by 12 h recovery in normoxic water. During 20 h exposure to hypoxia, white muscle [ATP] was maintained at normoxic levels primarily through a 20% decrease in [creatine phosphate] (CrP) and an activation of glycolysis yielding lactate accumulation. Muscle lactate accumulation maintained cytoplasmic redox state ([NAD+]/[NADH]) and was associated with an inactivation of the mitochondrial enzyme pyruvate dehydrogenase (PDH). The inactivation of PDH was not associated with significant changes in cytoplasmic allosteric modulators ([ADPfree], redox state, or [pyruvate]). Hypoxia exposure caused a ∼65% decrease in gill Na+/K+ ATPase activity, which was not matched by changes in Na+/K+ ATPase α-subunit protein abundance indicating post-translational modification of Na+/K+ ATPase was responsible for the decrease in activity. Despite decreases in gill Na+/K+ ATPase activity, plasma [Na+] increased, but this increase was possibly due to a significant hemoconcentration and fluid shift out of the extracellular space. Hypoxia caused an increase in Na+/K+ ATPase α-subunit mRNA abundance pointing to either reduced mRNA degradation during exposure to hypoxia or enhanced expression of Na+/K+ ATPase α-subunit relative to other genes.  相似文献   

13.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124–132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ + K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ + K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca2+, and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ + K+)-activated ATPase activity averaged 10.07 ± 2.80 μmol Pi/mg protei per h compared to 50.03 ± 11.41 for Mg2+-activated ATPase and 58.66 ± 10.07 for 5′-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ + K+)-activated ATPase without any effect on Mg2+-activated ATPase. Both (Na+ + K+)-activated ATPase and Mg2+-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ + K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ + K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

14.
Freshwater teleosts are challenged by diffusive ion loss across permeable epithelia including gills and skin. Although the mechanisms regulating ion loss are poorly understood, a significant component is thought to involve paracellular efflux through pathways formed via tight junction proteins. The mammalian orthologue (claudin-4) of zebrafish (Danio rerio) tight junction protein, claudin-b, has been proposed to form a cation-selective barrier regulating the paracellular loss of Na+. The present study investigated the cellular localization and regulation of claudin-b, as well as its potential contribution to Na+ homeostasis in adult zebrafish acclimated to ion-poor water. Using a green fluorescent protein-expressing line of transgenic zebrafish, we found that claudin-b was expressed along the lamellar epithelium as well as on the filament in the inter-lamellar regions. Co-localization of claudin-b and Na+/K+-ATPase was observed, suggesting its interaction with mitochondrion-rich cells. Claudin-b also appeared to be associated with other cell types, including the pavement cells. In the kidney, claudin-b was expressed predominantly in the collecting tubules. In addition, exposure to ion-poor water caused a significant increase in claudin-b abundance as well as a decrease in Na+ efflux, suggesting a possible role for claudin-b in regulating paracellular Na+ loss. Interestingly, the whole-body uptake of a paracellular permeability marker, polyethylene glycol-400, increased significantly after prolonged exposure to ion-poor water, indicating that an increase in epithelial permeability is not necessarily coupled with an increase in passive Na+ loss. Overall, our study suggests that in ion-poor conditions, claudin-b may contribute to a selective reduction in passive Na+ loss in zebrafish.  相似文献   

15.
Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na+, K+ ATPase. The ion pumping activity of Na+, K+ ATPase was unchanged in Cln3−/− mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3−/− mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na+, K+ ATPase were remarkably affected in Cln3−/− mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na+, K+ ATPase. Most of the processes regulated by multifunctional fodrin and Na+, K+ ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na+, K+ ATPase may play a role in the neuronal degeneration in JNCL.  相似文献   

16.
The effect of d-aldosterone on human erythrocyte ghost (Na+ + K+)-Mg ATPase has been studied. Aldosterone at 3.225 × 10?10M caused a 450% activation of (Na+ + K+)-Mg ATPase activity whilst inhibiting (Na+ + Na+)-Mg ATPase activity. Aldosterone acts by reducing the affinity of the external K+ site of (Na+ + K+)Mg ATPase for Na+ thereby resulting in improved efficiency of Na+ ? K+ transfer. Aldosterone was additionally found to modify both the Na+ and K+ activation of (Na+ + K+)Mg ATPase incubated in the presence of commercial ATP containing orthovanadate. Aldosterone was found to reverse the inhibitory effects of orthovanadate at high Na+ and K+ concentrations. The physiological significance of orthovanadate and aldosterone are discussed.  相似文献   

17.
The K+ and Na+ concentrations in living cells are strictly regulated at almost constant concentrations, high for K+ and low for Na+. Because these concentrations correspond to influx-efflux steady states, K+ and Na+ effluxes and the transporters involved play a central role in the physiology of cells, especially in environments with high Na+ concentrations where a high Na+ influx may be the rule. In eukaryotic cells two P-type ATPases are crucial in these homeostatic processes, the Na,K-ATPase of animal cells and the H+-ATPase of fungi and plants. In fungi, a third P-type ATPase, the ENA ATPase, was discovered nineteen years ago. Although for many years it was considered to be exclusively a fungal enzyme, it is now known to be present in bryophytes and protozoa. Structurally, the ENA (from exitus natru: exit of sodium) ATPase is very similar to the sarco/endoplasmic reticulum Ca2+ (SERCA) ATPase, and it probably exchanges Na+ (or K+) for H+. The same exchange is mediated by Na+ (or K+)/H+ antiporters. However, in eukaryotic cells these antiporters are electroneutral and their function depends on a ΔpH across the plasma membrane. Therefore, the current notion is that the ENA ATPase is necessary at high external pH values, where the antiporters cannot mediate uphill Na+ efflux. This occurs in some fungal environments and at some points of protozoa parasitic cycles, which makes the ENA ATPase a possible target for controlling fungal and protozoan parasites. Another technological application of the ENA ATPase is the improvement of salt tolerance in flowering plants.  相似文献   

18.
Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non‐sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant‐derived cardenolides. Although being potent inhibitors of the ubiquitous animal enzyme Na+/K+‐ATPase, milkweed bugs can tolerate cardenolides by means of resistant Na+/K+‐ATPases. Both adaptations, resistance and sequestration, are ancestral traits of the Lygaeinae. Using four milkweed bug species (Heteroptera: Lygaeidae: Lygaeinae) and the related European firebug (Heteroptera: Pyrrhocoridae: Pyrrhocoris apterus) showing different combinations of the traits “cardenolide resistance” and “cardenolide sequestration,” we tested how the two traits affect larval growth upon exposure to dietary cardenolides in an artificial diet system. While cardenolides impaired the growth of P. apterus nymphs neither possessing a resistant Na+/K+‐ATPase nor sequestering cardenolides, growth was not affected in the non‐sequestering milkweed bug Arocatus longiceps, which possesses a resistant Na+/K+‐ATPase. Remarkably, cardenolides increased growth in the sequestering dietary specialists Caenocoris nerii and Oncopeltus fasciatus but not in the sequestering dietary generalist Spilostethus pandurus, which all possess a resistant Na+/K+‐ATPase. We furthermore assessed the effect of dietary cardenolides on additional life history parameters, including developmental speed, longevity of adults, and reproductive success in O. fasciatus. Unexpectedly, nymphs under cardenolide exposure developed substantially faster and lived longer as adults. However, fecundity of adults was reduced when maintained on cardenolide‐containing diet for their entire lifetime but not when adults were transferred to non‐toxic sunflower seeds. We speculate that the resistant Na+/K+‐ATPase of milkweed bugs is selected for working optimally in a “toxic environment,” that is, when sequestered cardenolides are stored in the body.  相似文献   

19.
The adenosine triphosphatase (ATPase) system in worker honey-bee brains showed an increased activity of 57 per cent in Na+K+ATPase and 63 per cent in Mg2+ATPase from adult emergence to 7 days post-emergence. Mg2+ATPase activity remained about the same throughout the remainder of adult life, while Na+K+ATPase remained the same until the sixth week, when a decline occurred. The percentage mortality of the bees exceeded 90 per cent at the time of decline of Na+K+ATPase. The in vitro inhibition of Mg2+ATPase and Na+K+ATPase by 10 μM DDT was between 40 and 50 per cent and about 20 per cent, respectively. A somewhat greater sensitivity to DDT was determined in brains of older honey-bees.  相似文献   

20.
The structure of the kidney and the localization of Na+, K+-ATPase (NKA) immunopositive cells were examined throughout the postembryonic development of the Persian sturgeon, Acipenser persicus, from newly hatched prelarvae (10 mm) to 20 days post hatch (20 DPH) larvae (31 mm). Investigations were conducted through histology and immunohistochemistry by using the light and immunofluorescence microscopy. The pronephros was observed in newly hatched prelarvae. The cells lining the distal pronephric tubules and their collecting ducts showed laterally expressed NKA immunofluorescence that later extended throughout the whole cytoplasm. Mesonephrogenous placodes and pre-glomeruli were distinguished at 2 DPH along the collecting ducts posteriorly. Their tubules were formed and present in kidney mesenchyma, differentiated into neck, proximal, distal and collecting segments at 7 DPH when NKA immunopositive cells were observed. Their distal and collecting tubules showed an increasing immunofluorescence throughout their cytoplasm while the glomeruli remained unstained. From D 9 to D 17, the epithelial layer of pronephric collecting duct changed along the mesonephros to form ureters. Ureters, possessing isolated strong NKA immunopositive cells, appeared as two sac-like structures hanging under the trunk kidney. Since NKA immunopositive cells were not observed on the tegument or along the digestive tract of newly hatched prelarva, and also the gills are not formed yet, the pronephros is the only osmoregulatory organ until 4 DPH. At the larval stage, the pronephros and mesonephros are functional osmoregulatory organs and actively reabsorb necessary ions from the filtrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号