首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High level expression of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in Escherichia coli (E. coli) usually forms insoluble and inactive aggregates, i.e. inclusion bodies. In the present work, high performance hydrophobic interaction chromatography (HPHIC) was applied to the refolding of rhG-CSF, which was solubilized by 8.0 mol L?1 urea from the inclusion bodies. First a laboratorial scale column (10 mm × 20 mm I.D.) was employed to study the refolding process. Several factors, including concentration of ammonium sulfate, pH of the mobile phase and flow rate, were investigated in details. The results indicated that the rhG-CSF produced by E. coli could be successfully refolded with simultaneous purification by using HPHIC. The refolding process was further scaled up by using a large column (50 mm × 200 mm I.D.). 200 mL of rhG-CSF solution solubilized by 8.0 mol L?1 urea, with a total amount of protein around 1.6 g, could be loaded onto the large column at one time. Under these conditions, the obtained rhG-CSF had a specific activity of 2.3 × 108 IU mg?1 and a purity of 95.4%, the mass recovery during the purification was 36.9%. This work might have great impact on practical production of rhG-CSF, and it also shed a light on protein refolding using liquid chromatography at large scales.  相似文献   

2.
《Process Biochemistry》2014,49(7):1092-1096
PEGylation can effectively improve the therapeutic potential of staphylokinase (SAK), a thrombolysis agent for therapy of myocardial infarction. However, polyethylene glycol (PEG) can sterically shield SAK and drastically decrease its bioactivity. In the present study, N-terminally PEGylated SAKs (5 and 20 kDa PEG), C-terminally PEGylated SAKs with phenyl linker and the ones with amyl linker (5 and 20 kDa PEG) were prepared. The effects of the PEG length, the PEGylation site and linker chemistry on the bioactivity of the heat-treated PEGylated SAK were investigated. Heat treatment at 70 °C for 2 h can improve the bioactivity of the C-terminally PEGylated SAKs, where the one with amyl linker and 20 kDa PEG showed the highest increase extent (27%) in the bioactivity. Thus, our study can advance the development of long-acting pharmaceutical protein with high bioactivity.  相似文献   

3.
Recombinant human interferon gamma (rhIFN-γ) is a protein with great potential for clinical therapy, but rhIFN-γ expressed in Escherichia coli is usually in the form of insoluble inclusion bodies which should be refolded in vitro. A novel type of hairy particles (PNIPAM-grafted-PS) consisted of submicron polystyrene cores and brushes of thermo-sensitive poly(N-isopropylacrylamide) grafted onto the cores was prepared and then applied to assist the refolding of rhIFN-γ in vitro. Two kinds of PNIPAM-grafted-PS particles with different thickness of brush layer (55 nm and 110 nm) were synthesized, which were spherical shape with good dispersion properties and the LCST was about 33 °C. The effect of thickness of brush layer, particle concentration and temperature on the refolding process was investigated, it was shown that particles with larger thickness of brush layer were more effective and the final rhIFN-γ activity could be up to more than 21 times of that in dilution refolding when initial rhIFN-γ concentration was 50 μg/mL. The optimal refolding condition was the concentration ratio of particle to rhIFN-γ 1:1 and refolding temperature of 15 °C. All results above demonstrated that PNIPAM-grafted-PS particles could assist rhIFN-γ refolding which presented an alternative way to facilitate recombinant protein refolding in vitro.  相似文献   

4.
《Process Biochemistry》2007,42(7):1107-1113
The current demands for adenoviral vectors are increasing to satisfy pre-clinical and clinical gene therapy protocols. Consequently, there is a necessity of methodologies to improve production and recovery of intact particles with the minimum effect upon bioactivity. The production of adenoviral vectors in HEK 293 cells and the potential of an alternative aqueous two-phase system (ATPS) composed of PEG 300-phosphate in recovery of adenoviral vectors were investigated. The production of adenoviral vectors was carried out using a 2 L bioreactor equipped with two Rushton impellers. Different parameters including initial cell density, harvesting time and the addition of a buffer (HEPES) were studied in order to improve the production of adenoviral vectors in HEK 293 cells. A yield of 8 × 1011 infective particles was achieved under the conditions characterized by the addition of Pluronic F-68, inoculation at an initial cell density of 3.5 × 105 cells/mL and harvest of infected cells at 48 h post infection (hpi). This material was used for the evaluation of the ATPS recovery processes. It was demonstrated that the chemical components of the ATPS did not have a significant effect upon the infectivity of the adenoviral vectors and a total recovery of approximately 90% was obtained. These findings contribute to the process development for the manufacture of adenoviral vectors and other nanoparticulate bioproducts.  相似文献   

5.
《Process Biochemistry》2014,49(1):54-60
The application of high hydrostatic pressure (HHP) impairs electrostatic and hydrophobic intermolecular interactions, promoting the dissociation of recombinant inclusion bodies (IBs) under mild conditions that favor subsequent protein refolding. We demonstrated that IBs of a mutant version of green fluorescent protein (eGFP F64L/S65T), produced at 37 °C, present native-like secondary and tertiary structures that are progressively lost with an increase in bacterial cultivation temperature. The IBs produced at 37 °C are more efficiently dissociated at 2.4 kbar than those produced at 47 °C, yielding 25 times more soluble, functional eGFP after the lower pressure (0.69 kbar) refolding step. The association of a negative temperature (−9 °C) with HHP enhances the efficiency of solubilization of IBs and of eGFP refolding. The rate of refolding of eGFP as temperature increases from 10 °C to 50 °C is proportional to the temperature, and a higher yield was obtained at 20 °C. High level refolding yield (92%) was obtained by adjusting the temperatures of expression of IBs (37 °C), of their dissociation at HHP (−9 °C) and of eGFP refolding (20 °C). Our data highlight new prospects for the refolding of proteins, a process of fundamental interest in modern biotechnology.  相似文献   

6.
Artificial chaperone (AC) containing cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) has been used to refold recombinant ribonuclease A (RNase A) from inclusion bodies (IBs). At low urea concentration (0.8 M), the AC could enhance the refolding yield of RNase A by effectively suppressing its intermolecular interaction-induced aggregation. As a result, 0.9 mg/mL RNase A could be 77% refolded, which was a 57% increase as compared to that without the AC. At high protein concentration range (0.9–2.3 mg/mL in total protein concentrations) and 1.6 M urea, CTAB selectively precipitated contaminant proteins distinctly, so a purification effect was achieved. For example, 1.5 mg/mL RNase A could be 62% refolded and recovered at a purity of 87%, which was a 34% increase in purity as compared to that in IBs (65%). The precipitation selectivity was considered due to the differences in the hydrophobicity of the proteins. The work indicates that by using the AC, RNase A could be efficiently refolded at low urea concentration and purified at high urea concentration from IBs at high protein concentrations.  相似文献   

7.
DsbA (disulfide bond formation protein A) is essential for disulfide bond formation directly affecting the nascent peptides folding to the correct conformation in vivo. In this paper, recombinant DsbA protein was employed to catalyze denatured lysozyme refolding and inhibit the aggregation of folding intermediates in vitro. Statistical methods, i.e., Plackett–Burman design and small central composite design, were adopted to screen out important factors affecting the refolding process and correlating these parameters with the refolding efficiency including both protein recovery and specific activity of refolded lysozyme. Four important parameters: initial lysozyme concentration, urea concentration, KCl concentration and GSSG (glutathione disulfide) concentration were picked out and operating conditions were optimized by introducing the effectiveness coefficient method and transforming the multiple objective programming into an ordinary constrained optimization issue. Finally, 99.7% protein recovery and 25,600 U/mg specific activity of lysozyme were achieved when 281.35 μg/mL denatured lysozyme refolding was catalyzed by an equivalent molar of DsbA at the optimal settings. The results indicated that recombinant DsbA protein could effectively catalyze the oxidized formation and reduced isomerization of intramolecular disulfide bonds in the refolding of lysozyme in vitro.  相似文献   

8.
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are important multicopper enzymes that are used in many biotechnological processes. A recombinant form of laccase from Bacillus sp. HR03 was overexpressed in Escherichia coli BL-21(DE3). Inclusion body (IB) formation happens quite often during recombinant protein production. Hence, developing a protocol for efficient refolding of proteins from inclusion bodies to provide large amounts of active protein could be advantageous for structural and functional studies. Here, we have tried to find an efficient method of refolding for this bacterial enzyme. Solubilization of inclusion bodies was carried out in phosphate buffer pH 7, containing 8 M urea and 4 mM β-mercaptoethanol and refolding was performed using the dilution method. The effect of different additives was investigated on the refolding procedure of denaturated laccase. Mix buffer (phosphate buffer and citrate buffer, 100 mM) containing 4 mM ZnSO4 and 100 mM sorbitol was selected as an optimized refolding buffer. Also Kinetic parameters of soluble and refolded laccase were analyzed.  相似文献   

9.
10.
This study investigated the effects of soluble organic matters on membrane fouling characteristics, using silt density index (SDI) and modified fouling index (MFI) to evaluate the fouling potential. Experimental results demonstrated that humic acid had significant effects on membrane fouling indexes. When its concentration was in the range of 0.01–0.05 mg/L, the SDI15 and MFI were 2.9–3.9 and 5.4–13.8 s/L2, respectively. According to the linear equations of MFI measurements, the fouling potential was in the order of humic acid > nucleic acid ≒ protein > glucose. Moreover, the molecular weight of dextran played an important role in membrane fouling indexes. Furthermore, a mathematical analysis of filtration experiments based on saturation curve was developed in this study. The maximum accumulated filtrate (Vmax) and the constant of filtration (kf) could be obtained to improve the precision of membrane fouling prediction.  相似文献   

11.
Reactivation of penicillin G acylase immobilized in glyoxyl-agarose after inactivation was studied with the purpose of increasing the lifespan of the biocatalyst by simple and reproducible strategies, considering unfolding–refolding and direct incubation in reactivation media. Reactivation yields were increased with respect to the control (fully aqueous medium) when cosolvents were added to the reactivation medium at concentrations below 50% (v/v). Best results were obtained with 30% (v/v) ethyleneglycol (EG) in both reactivation strategies. An increase in reactivation yield from 36.0 to 62.8% was obtained using the unfolding–refolding strategy, while an increase from 50.0 to 68.4% was obtained by direct incubation in aqueous media with respect to control. Catalytic modulators were also included in the reactivation medium: competitive inhibitors (phenylacetic acid and 2-thienylacetic acid) caused a reduction while non-competitive (7-ADCA and 6-APA) caused an increase in reactivation yield. Combining cosolvent and catalytic modulators, best results in both strategies were obtained with 30% (v/v) EG plus 100 mM 7-ADCA, where an increase in reactivation yield from 36.0 to 96.0% and from 50.0 to 98.0% was achieved with unfolding–refolding and direct incubation in reactivation media respectively. Apparent reactivation rate was higher in the case of direct incubation in reactivation media, best results being obtained when using 100 mM 7-ADCA and 30% (v/v) EG, with an increase with respect to the control (fully aqueous medium with no modulator) from 0.309 h?1 to 1.129 h?1, while for unfolding–refolding strategy increase was only from 0.124 h?1 to 0.384 h?1. Results indicate that direct incubation is a better strategy for penicillin G acylase reactivation and opens up the possibility of significantly increasing the operational lifespan of the biocatalyst by operating the reactor with repeated cycles of reaction and reactivation.  相似文献   

12.
The kinetic folding of β2-microglobulin from the acid-denatured state was investigated by interrupted-unfolding and interrupted-refolding experiments using stopped-flow double-jump techniques. In the interrupted unfolding, we first unfolded the protein by a pH jump from pH 7.5 to pH 2.0, and the kinetic refolding assay was carried out by the reverse pH jump by monitoring tryptophan fluorescence. Similarly, in the interrupted refolding, we first refolded the protein by a pH jump from pH 2.0 to pH 7.5 and used a guanidine hydrochloride (GdnHCl) concentration jump as well as the reverse pH jump as unfolding assays. Based on these experiments, the folding is represented by a parallel-pathway model, in which the molecule with the correct Pro32 cis isomer refolds rapidly with a rate constant of 5–6 s? 1, while the molecule with the Pro32 trans isomer refolds more slowly (pH 7.5 and 25 °C). At the last step of folding, the native-like trans conformer produced on the latter pathway isomerizes very slowly (0.001–0.002 s? 1) into the native cis conformer. In the GdnHCl-induced unfolding assays in the interrupted refolding, the native-like trans conformer unfolded remarkably faster than the native cis conformer, and the direct GdnHCl-induced unfolding was also biphasic, indicating that the native-like trans conformer is populated at a significant level under the native condition. The one-dimensional NMR and the real-time NMR experiments of refolding further indicated that the population of the trans conformer increases up to 7–9% under a more physiological condition (pH 7.5 and 37 °C).  相似文献   

13.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

14.
In this study, a novel and economic method for refolding and purifying recombinant tissue plasminogen activator derivative (r-PA; reteplase) was developed. Reteplase with nine disulfide bonds in its complex structure is expressed in the form of inclusion bodies in Escherichia coli and requires tedious dissolving and refolding processes to achieve its biological activity. Among the different refolding additives that were evaluated, glycerol and tranexamic acid (Txa) were found to be more effective in increasing the refolding yield of reteplase. Using response surface methodology, a solution containing 3.5 M urea, 33% (v/v) glycerol, and 400 mM Txa was found to give the highest refolding yield. The synergic effect of urea, glycerol, and Txa under optimum conditions for a reteplase concentration of 25 μg ml−1 resulted in a high refolding yield of 76.41%. Increased reteplase concentration in the refolding buffer was achieved using the pulse-fed method. In the pulse-fed method, a refolding yield of 49.53% was achieved for a final reteplase concentration of 300 μg ml−1. Using Txa as a novel refolding aid for reteplase instead of ionic amino acids like l-Arginine allowed to purify the refolded reteplase directly by cation-exchange chromatography with high purity.  相似文献   

15.
An optimization of the refolding of endostatin (ES), by a study of the conditions that can affect (i) dissociation of inclusion bodies (IBs) and (ii) renaturation under high hydrostatic pressure (HHP), is described. IBs produced by bacteria cultivated at 25 °C were shown to be more soluble than those produced at 37 °C and their dissociation by application of 2.4 kbar at 20 °C was shown to be further enhanced at ?9 °C. A red shift in intrinsic fluorescence spectra and an increase in binding of the hydrophobic fluorescent probe bis-ANS show subtle changes in conformation of ES in the presence of 1.5 M GdnHCl at 2.4 kbar, while at 0.4 kbar the native conformational state is favored. The 25% refolding yield obtained via compression of IBs produced at 37 °C by application of 2.4 kbar, was increased to 78% when conditions based on the insights acquired were utilized: dissociation at 2.4 kbar and ?9 °C of the IBs produced at 25 °C, followed by refolding at 0.4 kbar and 20 °C. Besides providing insights into the conformational transitions of ES structure under HHP, this work proposes innovative conditions that are likely to have wide applicability to the HHP-induced refolding of proteins in general.  相似文献   

16.
《Cytokine》2015,72(2):132-138
The purpose of this study was to determine if vitamin D status before supplementation influences the cytokine response after supplemental vitamin D. Forty-six reportedly healthy adults (mean(SD); age, 32(7) y; body mass index (BMI), 25.3(4.5) kg/m2; serum 25-hydroxyvitamin D (25(OH)D), 34.8(12.2) ng/mL) were randomly assigned (double blind) to one of three groups: (1) placebo (n = 15), or supplemental vitamin D (cholecalciferol) at (2) 4000 (n = 14) or (3) 8000 IU (n = 17). Supplements were taken daily for 35 days. Fasting blood samples were obtained before (Baseline, Bsl) and 35-days after (35-d) supplementation. Serum 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)D), cytokines, and intact parathyroid hormone with calcium were measured in each blood sample. Supplemental vitamin D increased serum 25(OH)D (4000 IU, ≈29%; 8000 IU, ≈57%) and 1,25(OH)D (4000 IU, ≈12%; 8000 IU, ≈38%) without altering intact parathyroid hormone or calcium. The vitamin D metabolite increases in the supplemental vitamin D groups (n = 31) were dependent on initial levels as serum 25(OH)D (r = −0.63, p < 0.05) and 1,25(OH)D (r = −0.45, p < 0.05) at Bsl correlated with their increases after supplementation. Supplemental vitamin D increased interferon (IFN)-γ and interleukin (IL)-10 in subjects that were vitamin D insufficient (serum 25(OH)D < 29 ng/mL) compared to sufficient (serum 25(OH)D  30 ng/mL) at Bsl. We conclude that supplemental vitamin D increase a pro- and anti-inflammatory cytokine in those with initially low serum 25(OH)D.  相似文献   

17.
Protein folding liquid chromatography (PFLC) is a powerful tool for simultaneous refolding and purification of recombinant proteins in inclusion bodies. Urea gradient size exclusion chromatography (SEC) is a recently developed protein refolding method based on the SEC refolding principle. In the presented work, recombinant human granulocyte colony-stimulating factor (rhG-CSF) expressed in Escheriachia coli (E. coli) in the form of inclusion bodies was refolded with high yields by this method. Denatured/reduced rhG-CSF in 8.0 mol.L(-1) urea was directly injected into a Superdex 75 column, and with the running of the linear urea concentration program, urea concentration in the mobile phase and around the denatured rhG-CSF molecules was decreased linearly, and the denatured rhG-CSF was gradually refolded into its native state. Aggregates were greatly suppressed and rhG-CSF was also partially purified during the refolding process. Effects of the length and the final urea concentration of the urea gradient on the refolding yield of rhG-CSF by using urea gradient SEC were investigated respectively. Compared with dilution refolding and normal SEC with a fixed urea concentration in the mobile phase, urea gradient SEC was more efficient for rhG-CSF refolding--in terms of specific bioactivity and mass recovery, the denatured rhG-CSF could be refolded at a larger loading volume, and the aggregates could be suppressed more efficiently. When 500 microL of solubilized and denatured rhG-CSF in 8.0 mol.L(-1) urea solution with a total protein concentration of 2.3 mg.mL(-1) was loaded onto the SEC column, rhG-CSF with a specific bioactivity of 1.0 x 10(8) IU.mg(-1) was obtained, and the mass recovery was 46.1%.  相似文献   

18.
Cell penetrating peptides (CPPs) have been extensively studied as vectors for cellular delivery of therapeutic molecules, yet the identity of their uptake routes remained unclear and is still under debate. In this study we provide new insights into CPP entry routes by quantitatively measuring the intracellular uptake of FAM-labeled Tat-peptide under rigorous kinetic and thermal conditions. The uptake of Tat-peptide between 4 and 15 °C corresponds to Q10 = 1.1, proceeding through a prompt (< 5 min), temperature-independent process, suggesting direct membrane translocation. At longer durations, Tat rate of uptake shows linear dependence on temperature with Q10 = 1.44, accompanied by activation energy Ea = 4.45 Kcal/mole. These values are significantly lower than those we found for the macropinocytosis probe dextran (Q10 = 2.2 and Ea = 7.2 Kcal/mole) which possesses an exponential dependence on temperature, characteristic of endocytosis processes. Tat-peptide and dextran do not interfere with each other's uptake rate and the ratio of Tat-peptide uptake to its extracellular concentration is ~ 15 times higher than that for dextran. In addition, Phloretin, a modulator of cell membrane dipole potential, is shown to increase dextran uptake but to reduce that of Tat. We conclude that the uptake of Tat differs from that of dextran in all parameters. Tat uptake proceeds by dual entry routes which differ by their energy dependence.  相似文献   

19.
《Process Biochemistry》2010,45(8):1432-1436
In this paper, a two-step process for initial capture of plasmid DNA (pDNA) and partial removal of RNA using polyethylene glycol (PEG) and di-potassium hydrogen phosphate aqueous two-phase systems (ATPS) has been investigated. A Kühni-type ATPS extraction column was prepared with 50 ml (12% (w/w) PEG 1450, 12% (w/w) phosphate) of stationary phase and loaded with crude mobile phase (26% (w/w) PEG 1450, 4% (w/w) phosphate and 70% (w/w) lysate) at a flow rate of 6 ml min−1 at an impeller speed of 200 rpm. The experiment was terminated after 100 min, and after complete resettling of the phases, 45 ml of stationary phase was harvested. During a subsequent second extraction step contained 18% (w/w) PEG 300 and 14% (w/w) phosphate, a proportion of RNA, which was also concentrated during the column process, was removed. It was demonstrated that the recovery of pDNA in the second bottom phase was 89.4%, which was similar to the initial recovery after column extraction (92.1%).  相似文献   

20.
Heterologous proteins are often poorly expressed in Escherichia coli and especially small peptides are prone to degradation. Npro autoprotease fusion proteins, deposited as inclusion bodies in E. coli, are a versatile tool for peptide and protein overexpression and generate an authentic N terminus at the target molecule. Autoproteolytic cleavage and subsequent release of the fusion partner are initiated upon refolding. Fusion proteins with the Npro mutant EDDIE follow a monomolecular reaction. The reaction rate was only dependent on chaotrope concentration, decreasing exponentially by a factor of 1.2–1.5 for urea and by a factor of 2.1–5.3 for GuHCl. The first amino acid of the target peptide had a major impact on the reaction rate studying a set of model peptides. Reaction rates were in the range of 2.2 × 10?4 to 7.3 × 10?5 s?1 and could be increased up to fivefold by exchanging the first amino acid of the target peptide. A panel of biophysical methods was used to assess EDDIE secondary and tertiary structure. Immediate formation of secondary structure and slight increase in β-sheet content of approximately 5% over the course of the cleavage reaction was observed and interpreted as aggregation. Aggregation and cleavage occurred simultaneously. EDDIE has a relatively loose structure with the cleavage site exhibiting the lowest solvent exposure. We hypothesize that this is the mechanism for establishing a spatial proximity between cleavage site and the catalytic centre of the autoprotease. Fluorescence measurements revealed that further structural changes did not occur after the initial hydrophobic collapse. Thus, the overall reaction is predominantly controlled by cleavage kinetics and refolding kinetics does not play a major role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号