首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crimean-Congo hemorrhagic fever virus (CCHFV) is a widely distributed tick-borne member of the Nairovirus genus (Bunyaviridae) with a high mortality rate in humans. CCHFV induces a severe disease in infected patients that includes, among other symptoms, massive liver necrosis and failure. The interaction between liver cells and CCHFV is therefore important for understanding the pathogenesis of this disease. Here, we described the in vitro CCHFV-infection and -replication in the hepatocyte cell line, Huh7, and the induced cellular and molecular response modulation. We found that CCHFV was able to infect and replicate to high titres and to induce a cytopathic effect (CPE). We also observed by flow cytometry and real time quantitative RT-PCR evidence of apoptosis, with the participation of the mitochondrial pathway. On the other hand, we showed that the replication of CCHFV in hepatocytes was able to interfere with the death receptor pathway of apoptosis. Furthermore, we found in CCHFV-infected cells the over-expression of PUMA, Noxa and CHOP suggesting the crosstalk between the ER-stress and mitochondrial apoptosis. By ELISA, we observed an increase of IL-8 in response to viral replication; however apoptosis was shown to be independent from IL-8 secretion. When we compared the induced cellular response between CCHFV and DUGV, a mild or non-pathogenic Nairovirus for humans, we found that the most striking difference was the absence of CPE and apoptosis. Despite the XBP1 splicing and PERK gene expression induced by DUGV, no ER-stress and apoptosis crosstalk was observed. Overall, these results suggest that CCHFV is able to induce ER-stress, activate inflammatory mediators and modulate both mitochondrial and death receptor pathways of apoptosis in hepatocyte cells, which may, in part, explain the role of the liver in the pathogenesis of CCHFV.  相似文献   

2.
Cancer cells are able to survive under conditions that cause endoplasmic reticulum stress (ER-stress), and can adapt to this stress by upregulating cell-survival signalling pathways and down-regulating apoptotic pathways. The cellular response to ER-stress is controlled by the unfolded protein response (UPR). Small Rho family GTPases are linked to many cell responses including cell growth and apoptosis. In this study, we investigate the function of small GTPases in cell survival under ER-stress. Using siRNA screening we identify that RAC1 promotes cell survival under ER-stress in cells with an oncogenic N92I RAC1 mutation. We uncover a novel connection between the UPR and N92I RAC1, whereby RAC1 attenuates phosphorylation of EIF2S1 under ER-stress and drives over-expression of ATF4 in basal conditions. Interestingly, the UPR connection does not drive resistance to ER-stress, as knockdown of ATF4 did not affect this. We further investigate cancer-associated kinase signalling pathways and show that RAC1 knockdown reduces the activity of AKT and ERK, and using a panel of clinically important kinase inhibitors, we uncover a role for MEK/ERK, but not AKT, in cell viability under ER-stress. A known major activator of ERK phosphorylation in cancer is oncogenic NRAS and we show that knockdown of NRAS in cells, which bear a Q61 NRAS mutation, sensitises to ER-stress. These findings highlight a novel mechanism for resistance to ER-stress through oncogenic activation of MEK/ERK signalling by small GTPases.  相似文献   

3.
Chronic stress in the endoplasmic reticulum (ER) underlies many degenerative and metabolic diseases involving apoptosis of vital cells. A well-established example is autosomal dominant retinitis pigmentosa (ADRP), an age-related retinal degenerative disease caused by mutant rhodopsins. Similar mutant alleles of Drosophila Rhodopsin-1 also impose stress on the ER and cause age-related retinal degeneration in that organism. Well-characterized signalling responses to ER stress, referred to as the unfolded protein response (UPR), induce various ER quality control genes that can suppress such retinal degeneration. However, how cells activate cell death programs after chronic ER stress remains poorly understood. Here, we report the identification of a signalling pathway mediated by cdk5 and mekk1 required for ER-stress-induced apoptosis. Inactivation of these genes specifically suppressed apoptosis, without affecting other protective branches of the UPR. CDK5 phosphorylates MEKK1, and together, they activate the JNK pathway for apoptosis. Moreover, disruption of this pathway can delay the course of age-related retinal degeneration in a Drosophila model of ADRP. These findings establish a previously unrecognized branch of ER-stress response signalling involved in degenerative diseases.  相似文献   

4.
Previous studies demonstrated that androgen receptor (AR) is expressed in human hepatocellular carcinoma (HCC), one of the male-dominant diseases. Glucose-regulated protein 78 kDa (GRP78/Bip), which has a role in cancer development, is one of the androgen response genes in prostate cell lines. The aim of this study was to investigate the impact of AR on endoplasmic reticulum (ER)-stress signaling in human hepatoma. AR and GRP78 expressions were examined in human liver tissue panels. Human hepatoma cells stably expressing short hairpin RNA targeting AR and cells over-expressing AR were generated. The expressions of ER-stress molecules and AR were measured by real-time RT-PCR and Western blotting. The effect of AR on ER-stress responsive gene expression was examined by reporter assay. Strong positive correlation between AR mRNA and GRP78 mRNA was observed in stage I/II-HCCs. AR enhanced ER-stress responsive element activities and GRP78 expression, and regulated ER-stress response in hepatocytes. Sorafenib strongly induced significant apoptosis in HepG2 cells by the inhibition of AR and inhibition of the downstream GRP78. AR seems a co-regulator of GRP78 especially in earlier-stage HCC. AR plays a critical role in controlling ER-stress, providing new therapeutic options against HCC.  相似文献   

5.
6.
《Cellular signalling》2014,26(7):1539-1548
Progranulin (PGRN) was reported to be a stress-response factor in response to hypoxia and acidosis. Here we present evidences demonstrating that PGRN is also an endoplasmic reticulum (ER) stress responsive factor: PGRN expression was induced and its activation of Erk1/2 and Akt signaling enhanced in response to ER stress; Normal ER stress response was lost in PGRN deficient cells and PGRN deficient cells became hypersusceptible to ER stress-induced apoptosis; additionally, recombinant PGRN could rescue the defects in ER-stress responses seen in PGRN deficient cells. Mechanistic studies indicated that PGRN/TNFR2 was critical for PGRN mediated regulation of ER stress response: similar to PGRN, the expression of TNFR2, but not TNFR1, was also induced in the course of ER stress; in addition, the association between PGRN and TNFR2 was markedly enhanced following ER stress; More importantly, PGRN protection of ER stress induced apoptosis was abolished when TNFR2 signaling was blocked. In addition, the 2nd and 3rd cysteine-rich domains (CRD) in the extracellular portion of TNFR2 (CRD2CRD3), known to directly bind to PGRN, disturbed the interaction of PGRN with TNFR2, and in turn abolished PGRN-mediated activation of Erk1/2 and Akt signaling and protection against apoptosis in response to ER-stress. Collectively, PGRN plays an important role in ER stress and regulates ER stress response through interacting with TNFR2. This study provides new insight into PGRN regulation of stress response and may also present PGRN as a potential molecular target for treating stress-associated disorders.  相似文献   

7.
Cell death by apoptosis is a common response to environmental stimuli and a frequent event in a multicellular organism. Not surprisingly, apoptosis is also found in microbial infections where it may contribute to progression and outcome. Perhaps less predictably, a number of bacteria have also been found to alleviate or even to inhibit apoptosis. Today we are at a point where our in some parts detailed knowledge of the molecular pathway to apoptosis allows us to probe situations in biology for the occurrence of apoptosis and to inquire into mechanisms of apoptosis induction and inhibition. In this brief article we will focus on anti-apoptotic activities exhibited by various bacteria. We will attempt to present the current knowledge on how the contact between mammalian and bacterial cell decrees resistance to apoptosis, what the respective contributions of the two partners are and how this interaction relates to the molecular path to apoptosis.  相似文献   

8.

Background

Lafora progressive myoclonus epilepsy (Lafora disease; LD) is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others have shown that both proteins form a functional complex that regulates glycogen synthesis by a novel mechanism involving ubiquitination and proteasomal degradation of at least two proteins, glycogen synthase and R5/PTG. Since laforin and malin localized at the endoplasmic reticulum (ER) and their regulatory role likely extend to other proteins unrelated to glycogen metabolism, we postulated that their absence may also affect the ER-unfolded protein response pathway.

Methodology/Principal Findings

Here, we demonstrate that siRNA silencing of laforin in Hek293 and SH-SY5Y cells increases their sensitivity to agents triggering ER-stress, which correlates with impairment of the ubiquitin-proteasomal pathway and increased apoptosis. Consistent with these findings, analysis of tissue samples from a LD patient lacking laforin, and from a laforin knockout (Epm2a-/-) mouse model of LD, demonstrates constitutive high expression levels of ER-stress markers BIP/Grp78, CHOP and PDI, among others.

Conclusions/Significance

We demonstrate that, in addition to regulating glycogen synthesis, laforin and malin play a role protecting cells from ER-stress, likely contributing to the elimination of unfolded proteins. These data suggest that proteasomal dysfunction and ER-stress play an important role in the pathogenesis of LD, which may offer novel therapeutic approaches for this fatal neurodegenerative disorder.  相似文献   

9.
S-Adenosyl-l -methionine (AdoMet) is a naturally and widely occurring sulfonium compound that plays a primary role in cell metabolism and acts as the principal methyl donor in many methylation reactions. AdoMet also exhibits antiproliferative and proapoptotic activities in different cancer cells. However, the molecular mechanisms underlying the effects exerted by AdoMet have only been partially studied. In the current study, we evaluated the antiproliferative effect of AdoMet on Cal-33 oral and JHU-SCC-011 laryngeal squamous cancer cells to define the underlying mechanisms. We demonstrated that AdoMet induced apoptosis in Cal-33 and JHU-SCC-011 cells, involving a caspase-dependent mechanism paralleled by an increased Bax/Bcl-2 ratio. Moreover, we showed, for the first time, that AdoMet induced ER-stress in Cal-33 cells and activated the unfolded protein response, which can be responsible for apoptosis induction through the activation of CHOP and JNK. In addition, AdoMet-induced ER-stress was followed by autophagy with a consistent increase in the levels of the autophagic marker LC3B-II, which was indeed potentiated by the autophago-lysosome inhibitor chloroquine. As both escape from apoptosis and decreased activation of JNK are mechanisms of resistance to cisplatin (cDPP), an agent usually used in cancer therapy, we have evaluated the effects of AdoMet in combination with cDPP on Cal-33 cells. Our data showed that the combined treatment resulted in a strong synergism in inhibiting cell proliferation and in enhancing apoptosis via intrinsic mechanism. These results demonstrate that AdoMet has ER-stress-mediated antiproliferative activity and synergizes with cDDP on cell growth inhibition, thus providing the basis for its use in new anticancer strategies.  相似文献   

10.
We investigated the role of endoplasmic reticulum (ER) stress response and p38 MAPK pathways in the resistance of gastric cancer cells to chemotherapy. Pretreatment of the gastric cancer cells with the ER stress inducer drastically decreased the apoptotic rate induced by cisplatin or doxorubicin. Induction of ER stress also led to the activation of p38. Inhibition of p38 activity abrogated the effects of ER stress-induced resistance to apoptosis induced by cisplatin- and doxorubicin treatment. Thus, ER-stress response in gastric cancer cells causes resistance to cisplatin- and doxorubicin-induced apoptosis, and ER-stress induced chemo-resistance can be overcome by blocking p38 activity.  相似文献   

11.
Reticulon3 (RTN3), firstly isolated from the retina and widely expressed in human tissues with the highest expression in the brain, is presumed to play an important role in the developing axons through the transport of liquids and proteins. We have identified and characterized RTN3 as a RTN4B/ASY interaction protein. Here we demonstrated that ER-stress activated RTN3 expression. CHOP and ATF6 were sufficient to up-regulate the expression of RTN3. The down-regulation of RTN3 would induce apoptosis and attenuate the anti-apoptotic activity of Bcl-2, indicating RTN3 was required for the cellular survival and optimal anti-apoptotic activity of Bcl-2. Our present studies also indicated ER-stress induced RTN3 up-regulation could trigger Bcl-2 translocation from ER to mitochondria. Moreover, the previous studies showed that RTN4B was also a Bcl-2-interacted protein. We found that RTN3 and RTN4B could block the access of Bcl-2 to each other and thereafter determined the Bcl-2 subcellular distribution. Taken together, our findings indicate that RTN3 is directly involved in the ER-constituents trafficking events through dually acting as an essential and important ER-stress sensor, and a trigger for the Bcl-2 translocation. Q. Wan and E. Kuang contributed equally to this work.  相似文献   

12.
13.
Short interfering RNAs (siRNAs) target specific mRNAs for their degradation mediated by RNA-induced silencing complex (RISC). Persistent activation of siRNA-RISC frequently leads to non-targeting toxicity. However, how cells mediate this stress remains elusive. In this communication, we found that the presence of non-targeting siRNA selectively induced the expression of an endoplasmic reticulum (ER)-resident protein, non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), but not other ER-stress proteins including GRP78, Calnexin and XBP1. Cells suffering from constant non-targeting siRNA stress grew slower and prolonged G1 phase, while NPGPx-depleted cells accumulated mature non-targeting siRNA and underwent apoptosis. Upon the stress, NPGPx covalently bound to exoribonuclease XRN2, facilitating XRN2 to remove accumulated non-targeting siRNA. These results suggest that NPGPx serves as a novel responder to non-targeting siRNA-induced stress in facilitating XRN2 to release the non-targeting siRNA accumulation.  相似文献   

14.
15.
16.
17.
18.
RTN3 can recruit Fas-associated death domain (FADD), thus initiating the ER-stress activated apoptosis. It also interacts with the β-secretase and its aggregation is critically associated with Alzheimer’s disease. Here, we first investigated the solution conformation of hRTN3, subsequently characterized its binding with hFADD. The results reveal: (1) both hRTN3 N- and C-termini are intrinsically unstructured. Nevertheless, the C-terminus contains two short helix-populated regions. (2) The unstructured hRTN3 C-terminus can bind to hFADD as shown by ITC. Further NMR investigation successfully identified the binding involved hRTN3 residues. (3) Although upon hRTN3-binding, the perturbed hFADD residues were distributed over the whole sequence, the majority of the significantly perturbed are over its death effector domain, very different from the previously observed binding mode for FADD. This study also implies a possible linkage between Alzheimer’s disease and ER-stress activated apoptosis.  相似文献   

19.
Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death.  相似文献   

20.
Tumor necrosis factor: an apoptosis JuNKie?   总被引:26,自引:0,他引:26  
Varfolomeev EE  Ashkenazi A 《Cell》2004,116(4):491-497
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号