首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
5.
We aimed to evaluate whether changes in maize (Zea mays) leaf expansion rate in response to environmental stimuli or developmental gradients are mediated by common or specific expansins, a class of proteins known to enhance cell wall extensibility. Among the 33 maize expansin or putative expansin genes analyzed, 19 were preferentially expressed at some point of the leaf elongation zone and these expansins could be organized into three clusters related to cell division, maximal leaf expansion, and cell wall differentiation. Further analysis of the spatial distribution of expression was carried out for three expansins in leaves displaying a large range of expansion rates due to water deficit, genotype, and leaf developmental stage. With most sources of variation, the three genes showed similar changes in expression and consistent association with changes in leaf expansion. Moreover, our analysis also suggested preferential association of each expansin with elongation, widening, or both of these processes. Finally, using in situ hybridization, expression of two of these genes was increased in load-bearing tissues such as the epidermis and differentiating xylem. Together, these results suggest that some expansins may be preferentially related to elongation and widening after integrating several spatial, environmental, genetic, and developmental cues.  相似文献   

6.
7.
Growth of lateral organs is a complex mechanism that starts with formation of lateral primordia.Basal developmental programs like polarity, organ identity and environmental cues influence the final organ size achieved via coordinated cell division and expansion. recent evidence shows that the precise balance between these two processes, known as compensation mechanisms, seems to be influenced by the identity of the organ. Furthermore, studies of mutants affected in floral organ size suggest the existence of developmental compartments within different floral whorls that show distinct compensation behaviors.Key words: Antirrhinum majus, cell division, cell expansion, COMPACTA ÄHNLICH, compensation, floral size, FORMOSA, NITIDA, organ identity  相似文献   

8.
The biotrophic pathogen Ustilago maydis causes tumors by redirecting vegetative and floral development in maize (Zea mays L.). After fungal injection into immature tassels, tumors were found in all floral organs, with a progression of organ susceptibility that mirrors the sequential location of foci of cell division in developing spikelets. There is sharp demarcation between tumor-forming zones and areas with normal spikelet maturation and pollen shed; within and immediately adjacent to the tumor zone, developing anthers often emerge precociously and exhibit a range of developmental defects suggesting that U. maydis signals and host responses are restricted spatially. Male-sterile maize mutants with defects in anther cell division patterns and cell fate acquisition prior to meiosis formed normal adult leaf tumors, but failed to form anther tumors. Methyl jasmonate and brassinosteroid phenocopied these early-acting anther developmental mutants by generating sterile zones within tassels that never formed tumors. Although auxin, cytokinin, abscisic acid and gibberellin did not impede tassel development, the Dwarf8 mutant defective in gibberellin signaling lacked tassel tumors; the anther ear1 mutant reduced in gibberellin content formed normal tumors; and Knotted1, in which there is excessive growth of leaf tissue, formed much larger vegetative and tassel tumors. We propose the hypothesis that host growth potential and tissue identity modulate the ability of U. maydis to redirect differentiation and induce tumors.  相似文献   

9.
Two maize genotypes differing in leaf elongation rate (high-LER and low-LER) were used for the investigation of the effects of nitrogen deficiency on leaf growth and development and activity of enzyme cell wall peroxidase in the leaf growth zone. Plants were grown in a growth cabinet in perlite as a substrate and watered with complete N-NO3 solution (+N) and N-NO3 deficient solution (–N). Comparison between the investigated genotypes showed that final leaf length in both N treatments was related with LER, but not with the duration of leaf elongation. Faster leaf elongation rate in high-LER compared with low-LER genotype, was associated with longer growth zone, a bigger number of cells in it, and higher cell flux rate, although cell elongation rate was similar in both genotypes. These lines of evidence indirectly indicated that leaves of the faster growing genotype were characterized by higher meristematic activity. Nitrogen deficiency reduced the flux of cells and cell elongation rate, length of cell division zone and the number of cells in whole zone, significantly for both genotypes, although duration of cell elongation was increased and final epidermal cell length was unchanged. These results showed that N deficiency reduced both cell division and cell elongation, which in turn resulted in decreased leaf length and prolonged time for leaf development. Nitrogen deficiency significantly increased both bulk and segmental cell wall peroxidase activity in the growth zone of both investigated genotypes, thus showing an interaction between leaf growth cessation and enzyme activity.  相似文献   

10.
《Journal of bryology》2013,35(3):185-196
Abstract

Leaves at the apex of a mature Aphanoregma patens (Hedw.) Lindb. (Physcomitrella patens (Hedw.) Bruch Schimp. in B.S.G.) gametophore differ markedly in size and form from those at its base. To determine how these differences are produced during development, we first examined qualitative and quantitative differences between successive leaves along the stem and among leaves at different developmental stages. Differences between successive leaves were slight and cumulative. Local changes in cell number and size combined to produce a regularly shaped and approximately bilaterally symmetrical leaf suggesting that cell division and cell expansion are regionally regulated and coordinated at the organ level. The midrib and marginal teeth are discrete characters, which were prefigured by changes in cell shape in leaves that lacked these characters. In leaf primordia, cell proliferation was responsible for most of the changes in leaf form and size early in development and may have continued as cell expansion took over as the primary contributor to leaf growth and morphogenesis. Thus, leaf heteroblasty in Physcomitrella probably results from modulation of a single developmental programme by external and/or internal forces, which alter progressively in intensity as a gametophore grows. We applied exogenous cytokinin and auxin separately to growing cultures to explore their effects on leaf growth. Cytokinin and auxin stimulated leaf cell division and leaf cell elongation, respectively. Also, young upper leaves of gametophores exposed to exogenous auxin closely resembled basal leaves of untreated plants. Therefore, endogenous cytokinins and auxins may be among the modulating internal forces involved in leaf morphogenesis and the establishment of leaf heteroblasty.  相似文献   

11.
12.
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.  相似文献   

13.
A conceptual framework for maize leaf development.   总被引:11,自引:0,他引:11  
What is and is not known about the maize leaf is reviewed. Analysis of genetic mosaics and direct observation with the SEM have broken leaf development into three distinct phases: recruitment of cells within the meristem, cell division into the 0.6-mm tall primordium, and postprimordial division and differentiation into the mature leaf. New data are presented that imply that cell division rates in the leaf are coordinated by inductive signals from the internal cells. Leaf cells that tend to divide more are held in check by slower growing neighbors; this complicates the search for developmental compartments. Experiments with recessive mutants that remove the ligule and auricle have been important in identifying an inducer signal with the specific meaning "make ligule-auricle." We have studied many dominant mutant alleles at seven different genes. Each mutant alters the position of the ligule boundary. We conclude the following. First, the mutants act in particular domains of the primordium. Second, the dominant mutants all move the ligule boundary in the same direction. Third, the mutants all retard developmental stage transitions. Fourth, three and probably four of the seven genes for which dominant mutants have been studied specify homeodomain proteins in the wrong place. The concept of "maturation schedule" is used to explain these data. All of the dominant mutant phenotypes are seen as consequences of immature cells being in the wrong place when inductive signals pass through the leaf. Several specific questions of leaf development and especially questions as to source of inductive signals or homologies among juvenile and adult organ parts are recast in light of this "maturation schedule" hypothesis.  相似文献   

14.
We performed large-scale, quantitative analyses of the maize (Zea mays) leaf proteome and phosphoproteome at four developmental stages. Exploiting the developmental gradient of maize leaves, we analyzed protein and phosphoprotein abundance as maize leaves transition from proliferative cell division to differentiation to cell expansion and compared these developing zones to one another and the mature leaf blade. Comparison of the proteomes and phosphoproteomes suggests a key role for posttranslational regulation in developmental transitions. Analysis of proteins with cell wall– and hormone-related functions illustrates the utility of the data set and provides further insight into maize leaf development. We compare phosphorylation sites identified here to those previously identified in Arabidopsis thaliana. We also discuss instances where comparison of phosphorylated and unmodified peptides from a particular protein indicates tissue-specific phosphorylation. For example, comparison of unmodified and phosphorylated forms of PINFORMED1 (PIN1) suggests a tissue-specific difference in phosphorylation, which correlates with changes in PIN1 polarization in epidermal cells during development. Together, our data provide insights into regulatory processes underlying maize leaf development and provide a community resource cataloging the abundance and phosphorylation status of thousands of maize proteins at four leaf developmental stages.  相似文献   

15.
The causal relationship between cell division and growth in plants is complex. Although altered expression of cell‐cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under‐explored, is that altered division patterns resulting from manipulation of cell‐cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma‐related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high‐resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell‐cycle gene expression.  相似文献   

16.
17.
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes.  相似文献   

18.
The spatial distribution of leaf elongation and adaxial epidermal cell production in leaf 6 of maize (Zea mays L. cv. Cecilia) plants grown in a growth chamber under two contrasting availabilities of P in the soil was investigated. Lower displacement velocities from 32.5 mm from leaf base and a shorter growth zone were found in low P (LP) leaves compared with control leaves. P deficiency significantly diminished maximum relative elemental growth rate and shifted its location closer to the leaf base. Cells were significantly longer in LP than in control leaves for all positions from the leaf base except at the end of the growth zone. For both treatments it took a similar time for a cell situated at the leaf base to reach the limit of the growth zone. The average length of the cell division zone was decreased by 21% in LP leaves. Significant differences were found in cell production and cell division rates from 12.5 mm from the leaf base although maximum values were similar between P treatments. A shorter zone of cell division with lower cell production rates along most of its length was the regulatory event that decreased cell production, and ultimately leaf elongation rates, in P‐deficient maize plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号