首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.  相似文献   

2.
Noroviruses and norovirus virus-like particles (VLPs) exhibit strain specific patterns in their binding to ABH and Lewis histo-blood group antigens. In this study we demonstrate for the first time specific binding of Norwalk virus VLPs to type 1 and type 2 chain glycosphingolipids (GSLs) carrying ABH and Lewis antigens. N-succinimidyl-3-tributylstannyl benzoate (ATE) was precursor labeled with 125I and then conjugated to VLPs. The 125I-VLPs were used in GSL thin-layer chromatogram binding assays and displayed binding to H type 1, Lewis b, A type 1, A Lewis b GSLs but no binding to B type 1 or B Lewis b GSLs. For the type 2 chain GSLs the Norwalk VLPs bound to H type 2, Lewis y, A type 2 and A Lewis y. In addition, the VLPs bound to several complex GSLs from blood group O and A, but not from blood group B red blood cells.  相似文献   

3.
Nationwide groundwater surveillance of noroviruses in South Korea, 2008   总被引:1,自引:0,他引:1  
To inspect the norovirus contamination of groundwater in South Korea, a nationwide study was performed in the summer (June to August) and winter (October to December) of 2008. Three-hundred sites designated by the government ministry were inspected. Water samples were collected for analysis of water quality, microorganism content, and viral content. Water quality was assessed by temperature, pH, turbidity, residual chlorine, and nitrite nitrogen content. Microorganism contents were analyzed bacteria, total coliforms, Escherichia coli, and bacteriophage. Virus analyses included panenterovirus and norovirus. Two primer sets were used for the detection of norovirus genotypes GI and GII, respectively. Of 300 samples, 65 (21.7%) were norovirus positive in the summer and in 52 (17.3%) were norovirus positive in the winter. The genogroup GI noroviruses that were identified were GI-1, GI-2, GI-3, GI-4, GI-5, GI-6, and GI-8 genotypes; those in the GII genogroup were GII-4 and GII-Yuri genotypes. The analytic data showed correlative relationships between the norovirus detection rate and the following parameters: water temperature and turbidity in physical-chemical parameters and somatic phage in microbial parameters. It is necessary to periodically monitor waterborne viruses that frequently cause epidemic food poisoning in South Korea for better public health and sanitary conditions.  相似文献   

4.
Cao S  Lou Z  Tan M  Chen Y  Liu Y  Zhang Z  Zhang XC  Jiang X  Li X  Rao Z 《Journal of virology》2007,81(11):5949-5957
Noroviruses are one of the major causes of nonbacterial gastroenteritis epidemics in humans. Recent studies on norovirus receptors show that different noroviruses recognize different human histo-blood group antigens (HBGAs), and eight receptor binding patterns of noroviruses have been identified. The P domain of the norovirus capsids is directly involved in this recognition. To determine the precise locations and receptor binding modes of HBGA carbohydrates on the viral capsids, a recombinant P protein of a GII-4 strain norovirus, VA387, was cocrystallized with synthetic type A or B trisaccharides. Based on complex crystal structures observed at a 2.0-A resolution, we demonstrated that the receptor binding site lies at the outermost end of the P domain and forms an extensive hydrogen-bonding network with the saccharide ligand. The A and B trisaccharides display similar binding modes, and the common fucose ring plays a key role in this interaction. The extensive interface between the two protomers in a P dimer also plays a crucial role in the formation of the receptor binding interface.  相似文献   

5.
Noroviruses are genetically diverse, uncultivable, positive-sense RNA viruses and are the most common cause of epidemic acute gastroenteritis in humans in the United States. Recent studies of norovirus attachment in vitro by using recombinant virus-like particles (VLPs) suggest that various norovirus strains exhibit different patterns of attachment to ABH histo-blood group antigens, which are carbohydrate epitopes present in high concentrations on mucosal cell surfaces of the gut. However, attachment of live norovirus strains to histo-blood group antigens has not been investigated to date. Utilizing a newly designed magnetic bead-virus capture method, we characterized histo-blood group antigen attachment properties of various norovirus strains obtained from clinical stool specimens to compare the attachment properties of wild-type virus and VLPs and to further map norovirus attachment. Consistent with previous reports using VLPs, various strains of noroviruses exhibited different patterns of attachment to histo- blood group antigens. Norwalk virus bound specifically to H type 1, H type 3, and Le(b). Two genogroup II noroviruses, one representing the Toronto genotype and the other from a novel genotype, bound specifically to Le(b). A Desert Shield-like strain did not attach to H types 1, 2, or 3, H type 1 and 3 precursors, Le(a), or Le(b). Surprisingly, wild-type Snow Mountain virus (SMV) attached specifically to H type 3, which contradicted previous findings with SMV VLPs. On further investigation, we found that stool components promote this attachment, providing the first known observation that one or more components of human feces could promote and enhance norovirus attachment to histo-blood group antigens.  相似文献   

6.
Attachment of Norwalk (NV), Snow Mountain (SMV), and Hawaii (HV) virus-like particles (VLPs) to specific ABH histo-blood group antigens was investigated by using human saliva and synthetic biotinylated carbohydrates. The three distinct Norwalk-like viruses (NLVs) have various capacities for binding ABH histo-blood group antigens, suggesting that different mechanisms for NLV attachment likely exist. Importantly, antisera from NV-infected human volunteers, as well as from mice inoculated with packaged Venezuelan equine encephalitis virus replicons expressing NV VLPs, blocked the ability of NV VLPs to bind synthetic H type 1, Le(b), and H type 3, suggesting a potential mechanism for antibody-mediated neutralization of NV.  相似文献   

7.
Human noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestinal cell line and the human ileum biopsy specimens by immunofluorescence microscopy. The localizations of Ueno 7k VLPs (genogroup II.6) and each HBGA (type H1-, H2- and Leb-HBGAs) on the human intestinal cell line, Caco-2, were examined by confocal laser-scanning microscopy. To explore any interactions of NoVs and HBGAs in vivo, fresh biopsy specimens from human ileum were directly incubated with NoV VLPs and examined by immunofluorescence microscopy. We found that VLP binding depended on the state of cell differentiation, but not on the presence of HBGAs. In differentiated Caco-2 cells, we detected no type H1 HBGAs, but VLPs bound to the cells anyway. We incubated fresh biopsies of human ileum directly with VLPs, a model that better replicates the in vivo environment. VLPs mainly bound epithelial cells and goblet cells. Although the incubations were performed at 4°C to hinder internalization, VLPs were still detected inside cells. Our results suggest that VLPs utilize molecule(s) other than HBGAs during binding and internalization into cells.  相似文献   

8.
A series of tripeptidyl transition state inhibitors with new P1 and warhead moieties were synthesized and evaluated in a GI-1 norovirus replicon system and against GII-4 and GI-1 norovirus proteases. Compound 19, containing a 6-membered ring at the P1 position and a reactive aldehyde warhead exhibited sub-micromolar replicon inhibition. Retaining the same peptidyl scaffold, several reactive warheads were tested for protease inhibition and norovirus replicon inhibition. Of the six that were synthesized and tested, compounds 42, 43, and 45 potently inhibited the protease in biochemical assay and GI-1 norovirus replicon in the nanomolar range.  相似文献   

9.
Bu W  Mamedova A  Tan M  Xia M  Jiang X  Hegde RS 《Journal of virology》2008,82(11):5340-5347
Noroviruses are positive-sense, single-stranded RNA viruses that cause acute gastroenteritis. They recognize human histo-blood group antigens as receptors in a strain-specific manner. The structures presented here were analyzed in order to elucidate the structural basis for differences in ligand recognition of noroviruses from different genogroups, the prototypic Norwalk virus (NV; GI-1) and VA387 (GII-4), which recognize the same A antigen but differ in that NV is unable to bind to the B antigen. Two forms of the receptor-binding domain of the norovirus coat protein, the P domain and the P polypeptide, that were previously shown to differ in receptor binding and P-particle formation properties were studied. Comparison of the structures of the NV P domain with and without A trisaccharide and the NV P polypeptide revealed no major ligand-induced changes. The 2.3-A cocrystal structure reveals that the A trisaccharide binds to the NV P domain through interactions with the residues Ser377, Asp327, His329, and Ser380 in a mode distinct from that previously reported for the VA387 P-domain-A-trisaccharide complex. Mutational analyses confirm the importance of these residues in NV P-particle binding to native A antigen. The alpha-GalNAc residue unique to the A trisaccharide is buried deeply in the NV binding pocket, unlike in the structures of A and B trisaccharides bound to VA387 P domain, where the alpha-fucose residue forms the most protein contacts. The A-trisaccharide binding mode seen in the NV P domain complex cannot be sterically accommodated in the VA387 P domain.  相似文献   

10.
【背景】人源诺如病毒是急性胃肠炎暴发的主要原因,GII.4是过去几十年的主要流行基因型。2014/2015年出现的GII.17型变异株是中国首例导致大规模暴发的非GII.4流行株。通过对来自华南地区的诺如病毒GII.17型毒株的完整基因组序列进行分析,证实了该GII.17型突变株与先前确定的GII型变异株不同。【目的】制备广州地区GII.17型诺如病毒GZ-L343的病毒样颗粒,并系统表征其免疫原性及功能特性。【方法】借助杆状病毒表达系统制备GII.17-GZ-L343的病毒样颗粒,并通过氯化铯梯度超速离心对其进行纯化,制备抗血清并对其免疫功能进行评价。【结果】聚丙烯酰胺凝胶电泳和蛋白质免疫印迹结果表明所得蛋白分子量大小约为58kDa;透射电镜结果表明病毒样颗粒直径约为30nm;酶联免疫吸附测定结果显示该病毒样颗粒具有较好的免疫原性;唾液组织血型抗原的体外受体结合测定表明,该病毒样颗粒与部分A型、B型、O型及AB型分泌及非分泌血型样本存在阳性结合;效价测定结果表明免疫所得血清效价在104以上;交叉反应结果表明该抗血清与异型病毒样颗粒不存在交叉反应。此外,体外阻断结果表明,该抗血清仅能阻...  相似文献   

11.
Among Caliciviridae, the norovirus genus encompasses enteric viruses that infect humans as well as several animal species, causing gastroenteritis. Porcine strains are classified together with human strains within genogroup II, whilst bovine norovirus strains represent genogroup III. Various GI and GII human strains bind to carbohydrates of the histo-blood group family which may be shared among mammalian species. Genetic relatedness of human and animal strains as well as the presence of potentially shared ligands raises the possibility of norovirus cross-species transmission. In the present study, we identified a carbohydrate ligand for the prototype bovine norovirus strain Bo/Newbury2/76/UK (NB2). Attachment of virus-like particles (VLPs) of the NB2 strain to bovine gut tissue sections showed a complete match with the staining by reagents recognizing the Galα1,3 motif. Alpha-galactosidase treatment confirmed involvement of a terminal alpha-linked galactose. Specific binding of VLPs to the αGal epitope (Galα3Galβ4GlcNAcβ-R) was observed. The binding of Galα3GalαOMe to rNB2 VLPs was characterized at atomic resolution employing saturation transfer difference (STD) NMR experiments. Transfection of human cells with an α1,3galactosyltransferase cDNA allowed binding of NB2 VLPs, whilst inversely, attachment to porcine vascular endothelial cells was lost when the cells originated from an α1,3galactosyltransferase KO animal. The αGal epitope is expressed in all mammalian species with the exception of the Hominidaea family due to the inactivation of the α1,3galactosyltransferase gene (GGTA1). Accordingly, the NB2 carbohydrate ligand is absent from human tissues. Although expressed on porcine vascular endothelial cells, we observed that unlike in cows, it is not present on gut epithelial cells, suggesting that neither man nor pig could be infected by the NB2 bovine strain.  相似文献   

12.
Noroviruses (NoVs) are one of the leading causes of gastroenteritis in children and adults. For the last 2 decades, genogroup II genotype 4 (GII.4) NoVs have been circulating worldwide. GII.4 NoVs can be divided into variants, and since 2002 they have circulated in the population before being replaced every 2 or 3 years, which raises questions about the role of their histo-blood group antigen (HBGA) ligands in their evolution. To shed light on these questions, we performed an analysis of the interaction between representative GII.4 variants and HBGAs, and we determined the role of selected amino acids in the binding profiles. By mutagenesis, we showed that there was a strict structural requirement for the amino acids, directly implicated in interactions with HBGAs. However, the ablation of the threonine residue at position 395 (ΔT395), an epidemiological feature of the post-2002 variants, was not deleterious to the binding of the virus-like particle (VLP) to the H antigen, while binding to A and B antigens was severely hampered. Nevertheless, the ΔT395 VLPs gained the capacity to bind to the Lewis x and sialyl-Lewis x antigens in comparison with the wild-type VLP, demonstrating that amino acid residues outside the HBGA binding site can modify the binding properties of NoVs. We also analyzed the attachment of baculovirus-expressed VLPs from six variants (Bristol, US95/96, Hunter, Yerseke, Den Haag, and Osaka) that were isolated from 1987 to 2007 to phenotyped saliva samples and synthetic HBGAs. We showed that the six variants could all attach to saliva of secretors irrespective of the ABO phenotype and to oligosaccharides characteristic of the secretor phenotype. Interestingly, Den Haag and Osaka variants additionally bound to carbohydrates present in the saliva of Lewis-positive nonsecretors. The carbohydrate binding profile and the genetic and mutagenesis analysis suggested that GII.4 binding to Lewis x and sialyl-Lewis x antigens might be a by-product of the genetic variation of the amino acids located in the vicinity of the binding site. Analysis of the binding properties for the six variants by surface plasmon resonance showed that only post-2002 variants (i.e., Hunter, Yerseke, Den Haag, and Osaka) presented strong binding to A and B antigens, suggesting that the GII.4 evolution could be related to an increased affinity for HBGAs for the post-2002 variants. The combination of increased affinity for ABH antigens and of a newly acquired ability to recognize glycans from Lewis-positive nonsecretors could have contributed to the epidemiological importance of strains such as the Den Haag GII.4 subtype.  相似文献   

13.
The norovirus P particle is an octahedral nanoparticle formed by 24 copies of the protrusion (P) domain of the norovirus capsid protein. This P particle is easily produced in Escherichia coli, extremely stable, and highly immunogenic. There are three surface loops per P domain, making a total of 72 loops per particle, and these are potential sites for foreign antigen presentation for immune enhancement. To prove this concept, a small peptide (His tag, 7 amino acids [aa]) and a large antigen (rotavirus VP8, 159 aa) were inserted into one of the loops. Neither insertion affects P particle formation, while both antigens were presented well on the P particle surface. The immune-enhancement effect of the P particle was demonstrated by significantly increased antibody titers induced by the P particle-presented antigens compared to the titers induced by free antigens. In addition, the measured neutralization antibody titers and levels of protection against rotavirus shedding in mice immunized with the VP8 chimeric P particles were significantly higher than those of mice immunized with the free VP8 antigen. Sera from P particle-VP8 chimera-vaccinated animals also blocked norovirus virus-like particle (VLP) binding to the histo-blood group antigen (HBGA) receptors. From these data, the P particle appears to be an excellent vaccine platform for antigen presentation. The readily available three surface loops and the great capacity for foreign antigen insertion make this platform attractive for wide application in vaccine development and antibody production. The P particle-VP8 chimeras may serve as a dual vaccine against both rotavirus and norovirus.  相似文献   

14.
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50-90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level.  相似文献   

15.
Tan M  Meller J  Jiang X 《Journal of virology》2006,80(15):7322-7331
Noroviruses are the major viral pathogens of epidemic acute gastroenteritis affecting people worldwide. They have been found to recognize human histo-blood group antigens as receptors. The P domain of norovirus capsid protein was found to be responsible for binding to viral receptors, and the recombinant P protein forms P dimers and P particles in vitro. In this study, we demonstrate that a highly conserved arginine (R) cluster at the C terminus of the P domain is critical for receptor binding and P particle formation of the P proteins. Deletions of the R cluster abolished these functions. Replacement of the R cluster with histidines (another positively charged amino acid) resulted in low efficiency of receptor binding and P particle formation, while replacement with alanines led to loss of both functions completely. The R cluster also contains a highly conserved trypsin digestion site. A treatment of capsid protein or P domain mutants from both genogroup I (Norwalk virus) and genogroup II (VA387) noroviruses with trypsin resulted in a removal of the R cluster and the S domain, leaving a P polypeptide of 31.3 kDa (Norwalk virus) or 34.3 kDa (VA387), similar to the soluble P protein found in vivo. Our findings imply that the proteolytic process could be a necessary step for norovirus replication in the host.  相似文献   

16.
In November 2004, 116 individuals in an elderly nursing home in El Grao de Castellón, Spain were symptomatically infected with genogroup II.4 (GII.4) norovirus. The global attack rate was 54.2%. Genotyping of 34 symptomatic individuals regarding the FUT2 gene revealed that one patient was, surprisingly, a non-secretor, hence indicating secretor-independent infection. Lewis genotyping revealed that Lewis-positive and negative individuals were susceptible to symptomatic norovirus infection indicating that Lewis status did not predict susceptibility. Saliva based ELISA assays were used to determine binding of the outbreak virus to saliva samples. Saliva from a secretor-negative individual bound the authentic outbreak GII.4 Valencia/2004/Es virus, but did not in contrast to secretor-positive saliva bind VLP of other strains including the GII.4 Dijon strain. Amino acid comparison of antigenic A and B sites located on the external loops of the P2 domain revealed distinct differences between the Valencia/2004/Es and Dijon strains. All three aa in each antigenic site as well as 10/11 recently identified evolutionary hot spots, were unique in the Valencia/2004/Es strain compared to the Dijon strain. To the best of our knowledge, this is the first example of symptomatic GII.4 norovirus infection of a Lea+b− individual homozygous for the G428A nonsense mutation in FUT2. Taken together, our study provides new insights into the host genetic susceptibility to norovirus infections and evolution of the globally dominating GII.4 viruses.  相似文献   

17.
Norovirus (NoV) is a causative agent of acute gastroenteritis. NoV binds to histo-blood group antigens (HBGAs), namely, ABH antigens and Lewis (Le) antigens, in which type 1 and type 2 carbohydrate core structures constitute antigenically distinct variants. Norwalk virus, the prototype strain of norovirus, binds to the gastroduodenal junction, and this binding is correlated with the presence of H type 1 antigen but not with that of H type 2 antigen (S. Marionneau, N. Ruvoen, B. Le Moullac-Vaidye, M. Clement, A. Cailleau-Thomas, G. Ruiz-Palacois, P. Huang, X. Jiang, and J. Le Pendu, Gastroenterology 122:1967-1977, 2002). It has been unknown whether NoV distinguishes between the type 1 and type 2 chains of A and B antigens. In this study, we synthesized A type 1, A type 2, B type 1, and B type 2 pentasaccharides in vitro and examined the function of the core structures in the binding between NoV virus-like particles (VLPs) and HBGAs. The attachment of five genogroup I (GI) VLPs from 5 genotypes and 11 GII VLPs from 8 genotypes, GI/1, GI/2, GI/3, GI/4, GI/8, GII/1, GII/3, GII/4, GII/5, GII/6, GII/7, GII/12, and GII/14, to ABH and Le HBGAs was analyzed by enzyme-linked immunosorbent assay-based binding assays and Biacore analyses. GI/1, GI/2, GI/3, GI/4, GI/8, and GII/4 VLPs were more efficiently bound to A type 2 than A type 1, and GI/8 and GII/4 VLPs were more efficiently bound to B type 2 than B type 1, indicating that NoV VLPs distinguish between type 1 and type 2 carbohydrates. The dissociation of GII/4 VLPs from B type 1 was slower than that from B type 2 in the Biacore experiments; moreover, the binding to B type 1 was stronger than that to B type 2 in the ELISA experiments. These results indicated that the type 1 carbohydrates bind more tightly to NoV VLPs than the type 2 carbohydrates. This property may afford NoV tissue specificity. GII/4 is known to be a global epidemic genotype and binds to more HBGAs than other genotypes. This characteristic may be linked with the worldwide transmission of GII/4 strains. GI/2, GI/3, GI/4, GI/8, GII/4, and GII/7 VLPs bound to Le(a) expressed by nonsecretors, suggesting that NoV can infect individuals regardless of secretor phenotype. Overall, our results indicated that HBGAs are important factors in determining tissue specificity and the risk of transmission.  相似文献   

18.
Human noroviruses are genetically and antigenically highly divergent. Monoclonal antibodies raised in mice against one kind of norovirus virus-like particle (VLP), however, were found to have broad recognition. In this study, we present the crystal structure of the antigen-binding fragment (Fab) for one of these broadly reactive monoclonal antibodies, 5B18, in complex with the capsid-protruding domain from a genogroup II genotype 10 (GII.10) norovirus at 3.3-Å resolution and, also, the cryo-electron microscopy structure of the GII.10 VLP at ∼10-Å resolution. The GII.10 VLP structure was more similar in overall architecture to the GV.1 murine norovirus virion than to the prototype GI.1 human norovirus VLP, with the GII.10 protruding domain raised ∼15 Å off the shell domain and rotated ∼40° relative to the GI.1 protruding domain. In the crystal structure, the 5B18 Fab bound to a highly conserved region of the protruding domain. Based on the VLP structure, this region is involved in interactions with other regions of the capsid and is buried in the virus particle. Despite the occluded nature of the recognized epitope in the VLP structure, enzyme-linked immunosorbent assay (ELISA) binding suggested that the 5B18 antibody was able to capture intact VLPs. Together, the results provide evidence that the norovirus particle is capable of extreme conformational flexibility, which may allow for antibody recognition of conserved surfaces that would otherwise be buried on intact particles.  相似文献   

19.
20.
Tan M  Jiang X 《Journal of virology》2005,79(22):14017-14030
Norovirus is the most important cause of nonbacterial acute gastroenteritis. We have shown previously that the isolated P domain containing the hinge forms a dimer and binds to histo-blood group antigen (HBGA) receptors with a low affinity (M. Tan, R. S. Hegde, and X. Jiang, J. Virol. 78:6233-6242, 2004). Here, we reported that the P domain of VA387 without the hinge forms a small particle with a significantly increased receptor binding affinity. An end-linked oligopeptide containing one or more cysteines promoted P-particle formation by forming intermolecular disulfide bridges. The binding sensitivity of the P particle to HBGAs was enhanced >700-fold compared to the P dimer, which was comparable to that of virus-like particles. The binding specificity of the P particle was further confirmed by strong binding to the Caco-2 cells, a human colon carcinoma cell line. This binding enhancement was observed in the P particles of both norovirus GI and GII strains. The P particle is estimated to contain 12 P dimers, in which the P2 subdomain builds up the outer layer, while the P1 subdomain forms the internal core. Taken together, our data indicate that the P domain is involved not only in dimerization but also in polymerization of the protein during the capsid assembling. The enhanced receptor binding of the P particle reflects the intrinsic feature of the viral capsid. The easy production of the P particle and its strong binding to HBGAs suggest that the P particle is useful in studying pathogenesis and morphogenesis of norovirus and candidates for antiviral or vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号