首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a severe zoonotic disease that may be fatal if untreated. A broad spectrum of mammalian species may be accidentally infected even in captivity. In April 2011, liver lesions due to E. multilocularis were observed during the necropsy of a captive-born nutria (Myocastor coypus) in a French wildlife park, leading to initiation of a study to survey the parasite's presence in the park. A comparable environmental contamination with fox's feces infected by E. multilocularis was reported inside (17.8%) and outside (20.6%) the park. E. multilocularis worms were found in the intestines of three of the five roaming foxes shot in the park. Coprological analyses of potential definitive hosts in captivity (fox, lynx, wildcat, genet, wolf, bear and raccoon) revealed infection in one Eurasian wolf. Voles trapped inside the park also had a high prevalence of 5.3%. After diagnosis of alveolar echinococcosis in a Lemur catta during necropsy, four other cases in L. catta were detected by a combination of ultrasound and serology. These animals were treated twice daily with albendazole. The systematic massive metacestode development and numerous protoscoleces in L. catta confirmed their particular sensitivity to E. multilocularis infection. The autochthonous origin of the infection in all the captive animals infected was genetically confirmed by EmsB microsatellite analysis. Preventive measures were implemented to avoid the presence of roaming foxes, contact with potential definitive hosts and contaminated food sources for potential intermediate hosts.  相似文献   

2.

Background

Echinococcus multilocularis is the source of alveolar echinococcosis, a potentially fatal zoonotic disease. This investigation assessed the presence of E. multilocularis infection in definitive hosts in the Chenaran region of Razavi Khorasan Province, northeastern Iran.

Methodology/Principal Findings

Fecal samples from 77 domestic and stray dogs and 14 wild carnivores were examined using the flotation/sieving method followed by multiplex PCR of mitochondrial genes. The intestinal scraping technique (IST) and the sedimentation and counting technique (SCT) revealed adult Echinococcus in the intestines of five of 10 jackals and of the single wolf examined. Three jackals were infected only with E. multilocularis but two, and the wolf, were infected with both E. multilocularis and E. granulosus. Multiplex PCR revealed E. multilocularis, E. granulosus, and Taenia spp. in 19, 24, and 28 fecal samples, respectively. Echinococcus multilocularis infection was detected in the feces of all wild carnivores sampled including nine jackals, three foxes, one wolf, one hyena, and five dogs (6.5%). Echinococcus granulosus was found in the fecal samples of 16.9% of dogs, 66.7% of jackals, and all of the foxes, the wolf, and the hyena. The feces of 16 (21.8%) dogs, 7 of 9 (77.8%) jackals, and all three foxes, one wolf and one hyena were infected with Taenia spp.

Conclusions/Significance

The prevalence of E. multilocularis in wild carnivores of rural areas of the Chenaran region is high, indicating that the life cycle is being maintained in northeastern Iran with the red fox, jackal, wolf, hyena, and dog as definitive hosts.  相似文献   

3.
Echinococcus multilocularis is a tapeworm responsible in its larval stage for alveolar echinococcosis, a disease which is lethal when left untreated. Multivesiculated parasitic lesions in the liver were diagnosed at necropsy in a captive-born nutria (Myocastor coypus) and in a ring-tailed lemur (Lemur catta) which had been in a French zoo for 16 months. Molecular analyses confirmed the diagnosis of E. multilocularis obtained by histological analyses. These were the first cases of infection by E. multilocularis reported in lemurs in Europe, and the first case in nutria in European enclosures. Lemurs are confirmed to be particularly sensitive to E. multilocularis with a massive infection. In both cases, the infection appears to have been contracted in the zoo indirectly via environmental contamination by feces from roaming foxes. Due to the large endemic area for E. multilocularis, the increasing prevalence in foxes in France, and an increase in awareness of the disease, other cases of infection in captive animals will probably be recorded in France in the coming years.  相似文献   

4.
Echinococcus multilocularis is characterised by a wide geographical distribution, encompassing three continents (North America, Asia and Europe) yet very low genetic variability is documented. Recently, this parasite has been detected in red foxes (Vulpes vulpes) circulating in an Alpine region of Italy, close to Austria. This finding raised the question as to whether an autochthonous cycle exists in Italy or whether the infected foxes originated from the neighbouring regions of Austria. Studies have shown that multi-locus microsatellite analysis can identify genomic regions carrying mutations that result in a local adaptation. We used a tandem repeated multi-locus microsatellite (EmsB) to evaluate the genetic differences amongst adult worms of E. multilocularis collected in Italy, worms from neighbouring Austria and from other European and extra-European countries. Fluorescent PCR was performed on a panel of E. multilocularis samples to assess intra-specific polymorphism. The analysis revealed four closed genotypes for Italian samples of E. multilocularis which were unique compared with the other 25 genotypes from Europe and the five genotypes from Alaska. An analysis in the Alpine watershed, comparing Italian adult worms with those from neighbouring areas in Austria, showed a unique cluster for Italian samples. This result supports the hypothesis of the presence of an autochthonous cycle of E. multilocularis in Italy. EmsB can be useful for ‘tracking’ the source of infection of this zoonotic parasite and developing appropriate measures for preventing or reducing the risk of human alveolar echinococcosis.  相似文献   

5.
Echinococcus multilocularis, the causative agent of human alveolar echinococcosis, has the potential to circulate in urban areas where wild host populations and humans coexist. The spatial and temporal distribution of infection in wild hosts locally affects the risk of transmission to humans. We investigated the spatial and temporal patterns of E. multilocularis infection in coyotes and rodent intermediate hosts within the city of Calgary, Canada, and the association between spatial variations in coyote infection and the relative composition of small mammal assemblages. Infection by E. multilocularis was examined in small mammals and coyote faeces collected monthly in five city parks from June 2012 to June 2013. Coyote faeces were analysed using a ZnCl2 centrifugation and sedimentation protocol. Infection in intermediate hosts was assessed through lethal trapping and post-mortem analysis. Parasite eggs and metacestodes were morphologically identified and molecularly confirmed through species-specific PCR assays. Of 982 small mammals captured, infection was detected in 2/305 (0.66%) deer mice (Peromyscus maniculatus), 2/267 (0.75%) meadow voles (Microtus pennsylvanicus), and 1/71 (1.41%) southern red backed voles (Myodes gapperi). Overall faecal prevalence in coyotes was 21.42% (n = 385) and varied across sites, ranging from 5.34% to 61.48%. Differences in coyote faecal prevalence across sites were consistent with local variations in the relative abundance of intermediate hosts within the small mammal assemblages. Infections peaked in intermediate hosts during autumn (0.68%) and winter (3.33%), and in coyotes during spring (43.47%). Peaks of infections in coyote faeces up to 83.8% in autumn were detected in a hyper-endemic area. To the best of our knowledge, our findings represent the first evidence of a sylvatic life-cycle of E. multilocularis in a North American urban setting, and provide new insights into the complexity of the parasite transmission ecology.  相似文献   

6.
Characterizing the force of infection (FOI) is an essential part of planning cost effective control strategies for zoonotic diseases. Echinococcus multilocularis is the causative agent of alveolar echinococcosis in humans, a serious disease with a high fatality rate and an increasing global spread. Red foxes are high prevalence hosts of E. multilocularis. Through a mathematical modelling approach, using field data collected from in and around the city of Zurich, Switzerland, we find compelling evidence that the FOI is periodic with highly variable amplitude, and, while this amplitude is similar across habitat types, the mean FOI differs markedly between urban and periurban habitats suggesting a considerable risk differential. The FOI, during an annual cycle, ranges from (0.1,0.8) insults (95% CI) in urban habitat in the summer to (9.4, 9.7) (95% CI) in periurban (rural) habitat in winter. Such large temporal and spatial variations in FOI suggest that control strategies are optimal when tailored to local FOI dynamics.  相似文献   

7.
Alveolar echinococcosis is a refractory disease caused by the metacestode stage of Echinococcus multilocularis. The life cycle of this parasite is maintained primarily between foxes and many species of rodents; thus, dogs are thought to be a minor definitive host except in some endemic areas. However, dogs are highly susceptible to E. multilocularis infection. Because of the close contact between dogs and humans, infection of dogs with this parasite can be an important risk to human health. Therefore, new measures and tools to control and prevent parasite transmission required. Using 2-dimensional electrophoresis followed by western blot (2D-WB) analysis, a large glycoprotein component of protoscoleces was identified based on reactivity to intestinal IgA in dogs experimentally infected with E. multilocularis. This component, designated SRf1, was purified by gel filtration using a Superose 6 column. Glycosylation analysis and immunostaining revealed that SRf1 could be distinguished from Em2, a major mucin-type antigen of E. multilocularis. Dogs (n = 6) were immunized intranasally with 500 µg of SRf1 with cholera toxin subunit B by using a spray syringe, and a booster was given orally using an enteric capsule containing 15 mg of the same antigen. As a result, dogs immunized with this antigen showed an 87.6% reduction in worm numbers compared to control dogs (n = 5) who received only PBS administration. A weak serum antibody response was observed in SRf1-immunized dogs, but there was no correlation between antibody response and worm number. We demonstrated for the first time that mucosal immunization using SRf1, a glycoprotein component newly isolated from E. multilocularis protoscoleces, induced a protection response to E. multilocularis infection in dogs. Thus, our data indicated that mucosal immunization using surface antigens will be an important tool to facilitate the development of practical vaccines for definitive hosts.  相似文献   

8.
Wang Z  Wang X  Liu X 《EcoHealth》2008,5(2):115-126
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly significant infectious diseases occurring worldwide and caused by metacestodes of tapeworms Echinococcus granulosus and E. multilocularis, respectively. Both human CE and AE have highest prevalence rates in western and northwestern China. Livestock is the main intermediate host of E. granulosus, and wild small mammal are the main intermediate hosts of E. multilocularis. Since they range freely in pastoral areas, prey on wild small mammals and offal of livestock after slaughter, and have close relationships with humans, domestic dogs are the most important definitive host of both Echinococcus spp. with the highest risk of transmitting CE and AE to humans. Pastoralism is the occupation with the highest risk of being infected with the both kinds of echinococcosis due to the proximity of livestock, dogs, and wildlife host species. In this review, we summarize the epidemiology of human echinococcosis, the situation of parasite transmission in animal hosts, and possible transmission patterns in China. In addition, human activities and their potential influence on the transmission of echinococcosis are also discussed.  相似文献   

9.
Human alveolar echinococcosis (AE) is considered a neglected zoonotic disease by the World Health Organization (WHO). The causative pathogen, Echinococcus multilocularis, lives as an adult tapeworm in the intestinal tract of canines. AE was identified as an emerging public health issue in Tibetan communities of Shiqu County 20 years ago. On St. Lawrence Island, Alaska (USA), in the 1980s peri-domestic transmission of E. multilocularis was controlled by regular deworming of owned dogs over a 10-year period. In Tibetan communities, on the Tibetan Plateau, control of E. multilocularis transmission is challenging due to the continental setting, complex epidemiology, disease ecology, geography, and socio-cultural factors. However, a control programme based on deworming owned dogs using praziquental (PZQ) has been carried out since 2006. Assessment was conducted in townships where baseline data were available 10 years prior. Purging of dogs by oral administration of arecoline was used to measure E. multilocularis prevalence, trapping small mammals around communities was employed to assess the change in infection of pikas and voles, and analysis of human AE abdominal ultrasound-based data was used to understand the change in prevalence in the past decade. In all three evaluated townships, the E. multilocularis prevalence in owned dogs was significantly (P < 0.01) reduced from 7.23% (25/346) during 2000–2003 to 0.55% (1/181) in 2016. Human AE ultrasound-based prevalence (adjusted for age and sex) in five evaluated townships decreased significantly (P < 0.01) from 6.25% (200/3,198) during 2000–2002 to 3.67% (706/19,247) during 2015–2017. The 2016 prevalence of E. multilocularis metacestodes in small mammal intermediate hosts was not significantly different from the prevalence in 2008. The control programme was effective in reducing E. multilocularis infection in owned dogs and human AE prevalence, but did not significantly impact infection in wildlife intermediate hosts.  相似文献   

10.
Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.  相似文献   

11.
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis.  相似文献   

12.

Background

Alveolar echinococcosis is a zoonotic disease caused by the metacestode of Echinococcus multilocularis. Many species of small mammals, including arvicolid rodents or Ochotona spp., are natural intermediate hosts of the cestode. The main aim of this study was to identify natural intermediate hosts of E. multilocularis in Chenaran County, Razavi Khorasan Province, northeastern Iran, where the prevalence of infected wild and domestic carnivores is high.

Methodology/Principal Findings

A program of trapping was carried out in five villages in which this cestode was reported in carnivores. The livers of 85 small mammals were investigated for the presence of E. multilocularis infection using multiplex PCR of mitochondrial genes. Infections were identified in 30 specimens: 23 Microtus transcaspicus, three Ochotona rufescens, two Mus musculus, one Crocidura gmelini, and one Apodemus witherbyi.

Conclusions/Significance

A range of small mammals therefore act as natural intermediate hosts for the transmission of E. multilocularis in Chenaran County, and the prevalence suggested that E. multilocularis infection is endemic in this region. The existence of the life cycle of this potentially lethal cestode in the vicinity of human habitats provides a significant risk of human infection.  相似文献   

13.
Two species of Echinococcus occur in Canada: (1) E. multilocularis and (2) E. granulosus. E. multilocularis, originating in the Arctic, is spreading southwards and has reached Saskatchewan and the Dakotas. The original hosts are foxes but dogs and cats are alternatives. The larvae occur in field mice as multilocular microcysts containing numerous protoscolices, but in man the cysts are alveolar and sterile and resemble both in histology and growth a cholangiocellular carcinoma of the liver with metastases. Signs and symptoms are chronic and poorly defined. Diagnosis is difficult. Test antigens are not yet satisfactory. E. granulosus has a sylvatic cycle, the adult tapeworms living in wolves and dogs, while the larvae occur only in Cervidae and man. The cysts occur almost exclusively in the lungs as unilocular, macrocystic, relatively benign tumours, although abnormal complications can occur. The Casoni intradermal sensitivity test, its technique and interpretation are discussed.  相似文献   

14.

Background

Human echinococcosis is a neglected zoonosis caused by parasites of the genus Echinococcus. The most frequent clinical forms of echinococcosis, cystic echinococcosis (CE) and alveolar echinococcosis (AE), are responsible for a substantial health and economic burden, particularly to low-income societies. Quantitative epidemiology can provide important information to improve the understanding of parasite transmission and hence is an important part of efforts to control this disease. The purpose of this review is to give an insight on factors associated with echinococcosis in animal hosts by summarising significant results reported from epidemiological studies identified through a systematic search.

Methodology and Principal Findings

The systematic search was conducted mainly in electronic databases but a few additional records were obtained from other sources. Retrieved entries were examined in order to identify available peer-reviewed epidemiological studies that found significant risk factors for infection using associative statistical methods. One hundred studies met the eligibility criteria and were suitable for data extraction. Epidemiological factors associated with increased risk of E. granulosus infection in dogs included feeding with raw viscera, possibility of scavenging dead animals, lack of anthelmintic treatment and owners'' poor health education and indicators of poverty. Key factors associated with E. granulosus infection in intermediate hosts were related to the hosts'' age and the intensity of environmental contamination with parasite eggs. E. multilocularis transmission dynamics in animal hosts depended on the interaction of several ecological factors, such as hosts'' population densities, host-prey interactions, landscape characteristics, climate conditions and human-related activities.

Conclusions/Significance

Results derived from epidemiological studies provide a better understanding of the behavioural, biological and ecological factors involved in the transmission of this parasite and hence can aid in the design of more effective control strategies.  相似文献   

15.
16.
This study investigated the epidemiological and ecological factors to assess the infection pressure of alveolar echinococcosis to human which are living in villages and small towns. Foxes and fox faeces were examined for Echinococcus multilocularis and foxes were observed by radio telemetry in Upper Bavaria, Germany. Forty-three percent of the village foxes (n = 65) had been infected with E. multilocularis. This prevalence rate did not differ significantly from the prevalence among rural foxes, which was 39% (n = 33; χ 2 = 0.12, df = 1, p = 0.727) determined by the intestinal scraping technique. PCR analyses of fox faeces showed a higher infection rate of 35% (n = 26) among rural foxes than among foxes in villages and small towns (26%, n = 69; χ 2 = 0.68, df = 1, p = 0.411). One quarter of the fox faecal samples come from private gardens of residents. The radio-tracking study on 17 foxes showed that foxes preferred the built-up area and grassland outside the villages. Village foxes concentrated their activity within a range of 500 m around the settlement. Sixty-four percent of all bearings for radio-tracked foxes showed positions in areas outside the town, and 36% of bearings were within the settlement. Village foxes, which are infected with E. multilocularis, are able to carry the parasite continuously into settlements and fox faeces present an immediate source of infection to humans, especially within their gardens. Therefore, foxes are responsible for environmental E. multilocularis egg contamination in the vicinity of humans, leading to an infection risk to inhabitants of villages and small towns.  相似文献   

17.
Human Alveolar Echinococcosis (HAE) is a potentially fatal parasitic disease caused by Echinococcus multilocularis, a cestode characterized by a sylvatic life-cycle involving several species of rodents and lagomorphs as intermediate hosts and canids as definitive hosts. Despite the wide distribution of the parasite in North America, the number of competent intermediate host species identified to date is still relatively small, and mainly includes the northern vole (Microtus oeconomus), brown lemming (Lemmus sibiricus), northern red-backed vole (Myodes rutilus), deer mouse (Peromyscus maniculatus) and meadow vole (Microtus pennsylvanicus).By monitoring the infections in rodents in the city of Calgary (Alberta, Canada), we have detected a case of severe alveolar echinococcosis in a southern red-backed vole (Myodes gapperi), a species never reported before as an intermediate host for this parasite. Observation of protoscolices in the intra-abdominal multilocular cysts indicates that M. gapperi could act as a competent intermediate host for the transmission of E. multilocularis.Since M. gapperi can be found in close proximity to, and within metropolitan areas, this species could play a role in the establishment and maintenance of the sylvatic life-cycle of E. multilocularis in urban landscapes, where the potential for zoonotic transmission is higher. The new intermediate host reported needs to be taken into account in future surveys and transmission models for this parasite.  相似文献   

18.
Urbanisation of alveolar echinococcosis is a new phenomenon that has been highlighted during the last few decades. It has thus become necessary to understand the dynamics of transmission of Echinococcus multilocularis in urbanised areas. Spatial heterogeneity of infection by E. multilocularis has been explained as the result of a multifactorial dependence of the transmission in which the factors depend on the scale of the investigation. The aim of this study was to assess, in an urbanised area, the effect of such environmental factors as season, habitat type and the level of urbanisation, on the availability of two major intermediate hosts (Microtus spp. and Arvicola terrestris), the distribution of red fox faeces and the distribution of E. multilocularis as determined by detection of coproantigens in faeces. Results of the study revealed higher densities of Microtus spp. in rural than in peri-urban areas. Moreover this species was highly aggregated in urban wasteland. Arvicola terrestris densities did not appear to be linked to the level of urbanisation or to the type of habitat studied. Distribution of faeces was positively linked to distance walked and to Microtus spp. and A. terrestris distributions whatever the level of urbanisation. Such a distribution pattern could enhance the transmission cycle in urban areas. The Copro-ELISA test results on faeces collected in the field revealed that ODs were significantly negatively correlated with the abundance of A. terrestris. The larger population densities of Microtus spp. found in urban wastelands and the well known predominance of Microtus spp. in the red fox diet in the region suggest that Microtus spp. may play a key role in urban transmission of the parasite in the study area.  相似文献   

19.
Echinococcus multilocularis is the causative agent of alveolar echinococcosis that is considered as the most severe parasitic disease in Europe. The contribution of cat to environmental contamination by E. multilocularis is generally considered as extremely low based on results of experimental infections and worm burden estimations from natural infections. However, the recent collection of numerous cat feces from kitchen gardens in high endemic areas and the detection of E. multilocularis DNA in a significant number of these feces raise the question of the risk of human transmission from cats. This study aimed to provide a quantitative estimation of E. multilocularis eggs in feces from naturally infected cats. A field sampling conducted in 192 kitchen gardens during a joint study led to the collection and analysis of 597 cat feces, among them 7 (1.2%) yielded positive results for E. multilocularis real-time PCR. The entire pellets obtained after homogenization, filtration and centrifugation of a 5 g-sample for each of these 7 feces were examined under a stereoscopic microscope. After assessing their number, 20 taeniid eggs were individually isolated and specifically identified by real-time PCR. Morphologically mature E. multilocularis eggs were identified in 4 samples and the counting of 4 to 43 E. multilocularis eggs per gram in these samples, i.e. 62 to 2331 eggs per feces when the total mass of the feces is considered. The number of eggs counted in 2 feces suggests a biotic potential of some naturally infected cats that largely exceed the previous experimental estimations.  相似文献   

20.
The progressive growth of Echinococcus multilocularis metacestodes and their tissue infiltration will cause organ malfunction and finally failure. In few patients, E. multilocularis metacestode proliferation will spontaneously regress, but little is known about the determinants which may restrain metacestode survival and growth. In this study, chemokine responses were investigated in E. multilocularis patients at different states of infection, i.e. with progressive, stable and cured alveolar echinococcosis (AE). Characteristic chemokine profiles and changes in their production were observed in AE patients and infection-free controls when their peripheral blood cells were cultured with E. multilocularis antigens. The production of CC and CXC chemokines which associate with inflammation (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5 and GRO-α/CXCL1) was constitutively larger in AE patients than in controls; and the elevated chemokine releases were equal in patients with progressive, stable or cured AE. Cluster analyses identified three distinct chemokine response profiles; chemokines were enhanced, depressed or produced in similar quantities in AE patients and controls. A disparate cellular responsiveness was observed in AE patients to viable E. multilocularis vesicles; cluster 1 (GRO-α/CXCL1, MCP-3/CCL7, MCP-4/CCL13, TARC/CCL17, LARC/CCL20) and cluster 2 chemokines (PARC/CCL18, MDC/CCL22, MIG/CXCL9) were clearly diminished, while cluster 3 chemokines (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5) augmented. The increased production of inflammatory chemokines in patients even with cured AE could be induced by residual E. multilocularis metacestode lesions which continuously stimulate production of inflammatory chemokines. E. multilocularis metacestodes also suppressed cellular chemokine production in AE patients, and this may constitute an immune escape mechanism which reduces inflammatory host responses, prevents tissue destruction and organ damage, but may also facilitate parasite persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号