首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Helicobacter pylori (H. pylori) infection is among the most prevalent human infections. CXCL12 is a well-known CXC chemokine involved in inflammation and play major roles in angiogenesis. There is currently very limited data on the role of CXCL12 in peptic ulcer disease. Hence, we aimed to explore whether CXCL12 is involved in the pathogenesis of peptic ulcer induced by H. pylori. In this study, we enrolled 102 H. pylori-infected patients, including 51 with active ulcer (GA) and 51 with healing ulcer (GH). We also recruited 50 healthy subjects as control, which did not show any sign or symptoms of chronic inflammatory diseases, infection, or immune-related disorders. Endoscopy was performed to determine the stage of the disease. ELISA was used for detection of H. pylori infection and CXCL12 measurement. We also employed western blotting to detect CXCL12 in ulcerative lesions of H. pylori. Demographic data were also collected by questionnaire. Our results demonstrated that CXCL12 serum levels in GA group (151.8 ± 18.31 pg/mL) were significantly higher than those in GH (36.89 ± 6.78 pg/mL) and control groups (33.77 ± 9.12 pg/mL) (P < 0.0001). However, we did not observe a significant difference between GH and control groups. Moreover, overexpression of CXCL12 in gastric lesions of patients in GA group was confirmed by Western blot analysis. According to the result of the present study, it could be concluded that CXCL12 is involved in the pathogenesis and healing of H. pylori-induced peptic ulcer. CXCL12 serum levels may also be used to distinguish between GA and GH phases of the disease.  相似文献   

2.
Crohn’s disease (CD) and ulcerative colitis (UC), two forms of inflammatory bowel disease (IBD), are chronic, relapsing, and tissue destructive lesions that are accompanied by the uncontrolled activation of effector immune cells in the mucosa. Recent estimates indicate that there are 1.3 million annual cases of IBD in the United States, 50% of which consists of CD and 50% of UC. Chemokines and cytokines play a pivotal role in the regulation of mucosal inflammation by promoting leukocyte migration to sites of inflammation ultimately leading to tissue damage and destruction. In recent years, experimental studies in rodents have led to a better understanding of the role played by these inflammatory mediators in the development and progression of colitis. However, the clinical literature on IBD remains limited. Therefore, the aim of this study was to evaluate systemic concentrations of key chemokines and cytokines in forty-two IBD patients with a range of disease activity compared to levels found in ten healthy donors. We found a significant increase in an array of chemokines including macrophage migration factor (MIF), CCL25, CCL23, CXCL5, CXCL13, CXCL10, CXCL11, MCP1, and CCL21 in IBD patients as compared to normal healthy donors (P < 0.05). Further, we also report increases in the inflammatory cytokines IL-16, IFN-γ, IL-1β and TNF-α in IBD patients when compared to healthy donors (P < 0.05). These data clearly indicate an increase in circulating levels of specific chemokines and cytokines that are known to modulate systemic level through immune cells results in affecting local intestinal inflammation and tissue damage in IBD patients. Blockade of these inflammatory mediators should be explored as a mechanism to alleviate or even reverse symptoms of IBD.  相似文献   

3.
The purpose of the study was to test the possible role of the androgen receptor (AR) agonist (testosterone; T), an AR antagonist (2-hydroxyflutamide; 2-Hf) or combination of both (T + 2-Hf) on progesterone receptor (PGR) expression in cultured porcine granulosa cells (GCs) or whole follicles. GCs isolated from mature pig follicles (6–8 mm in diameter) were cultured for 48 h. Experimental cultures were carried out with the addition of T (10?7 M), 2-Hf (1.7 × 10?4 M) or both T and 2-Hf for the last 24 h of culture. To better imitate in vivo conditions, isolated whole porcine follicles (6–8 mm in diameter) were cultured for 24 h in an organ culture system, with the addition of the same factors. The cells or sections obtained from cultured follicles were processed for PGR immunocytochemical or immuno-histochemical staining. In addition, expression of PGR protein was determined by Western blot and progesterone (P4) concentrations in the culture media were measured by a radioimmunoassay. We found that isoform A of PGR is expressed in both granulosal and follicular cultures. The 2-Hf in the presence of T increased PGR protein expression in porcine GCs and whole follicles. In both granulosal and follicular cultures, 2-Hf or T alone inhibited P4 secretion, but simultaneous addition of 2-Hf and T increased P4 secretion. Our results indicate that androgens may be involved in the control of PGR expression in porcine GCs in vitro. Moreover, we suggest a potential auto/paracrine regulation of the follicular function by androgen-dependent signaling pathway.  相似文献   

4.
In rough-skinned newts, Taricha granulosa, exposure to an acute stressor results in the rapid release of corticosterone (CORT), which suppresses the ability of vasotocin (VT) to enhance clasping behavior. CORT also suppresses VT-induced spontaneous activity and sensory responsiveness of clasp-controlling neurons in the rostromedial reticular formation (Rf). The cellular mechanisms underlying this interaction remain unclear. We hypothesized that CORT blocks VT-enhanced clasping by interfering with V1a receptor availability and/or VT-induced endocytosis. We administered a physiologically active fluorescent VT conjugated to Oregon Green (VT–OG) to the fourth ventricle 9 min after an intraperitoneal injection of CORT (0, 10, 40 μg/0.1 mL amphibian Ringers). The brains were collected 30 min post-VT–OG, fixed, and imaged with confocal microscopy. CORT diminished the number of endocytosed vesicles, percent area containing VT–OG, sum intensity of VT–OG, and the amount of VT-V1a within each vesicle; indicating that CORT was interfering with V1a receptor availability and VT-V1a receptor-mediated endocytosis. CORT actions were brain location-specific and season-dependent in a manner that is consistent with the natural and context-dependent expression of clasping behavior. Furthermore, the sensitivity of the Rf to CORT was much higher in animals during the breeding season, arguing for ethologically appropriate seasonal variation in CORT's ability to prevent VT-induced endocytosis. Our data are consistent with the time course and interaction effects of CORT and VT on clasping behavior and neurophysiology. CORT interference with VT-induced endocytosis may be a common mechanism employed by hormones across taxa for mediating rapid context- and season-specific behavioral responses.  相似文献   

5.
Neospora caninum causes abortion and stillbirth in cattle. Identification of effective drugs against this parasite remains a challenge. Previous studies have suggested that disruption of abscisic acid (ABA)-mediated signaling in apicomplexan parasites such as Toxoplasma gondii offers a new drug target. In this study, the ABA inhibitor, fluridone (FLU), was evaluated for its action against N. caninum. Production of endogenous ABA within N. caninum was confirmed by ultra-performance liquid chromatography–tandem quadruple mass spectrometry. Subsequently, FLU treatment efficacy was assessed using in vitro. Results revealed that FLU inhibited the growth of N. caninum and T. gondii in vitro (IC50 143.1 ± 43.96 μM and 330.6 ± 52.38 μM, respectively). However, FLU did not affect parasite replication at 24 h post-infection, but inhibited egress of N. caninum thereafter. To evaluate the effect of FLU in vivo, N. caninum-infected mice were treated with FLU for 15 days. FLU treatment appeared to ameliorate acute neosporosis induced by lethal parasite challenge. Together, our data shows that ABA might control egress in N. caninum. Therefore, FLU has potential as a candidate drug for the treatment of acute neosporosis.  相似文献   

6.
《Cytokine》2010,49(3):295-302
Blood vessel growth is regulated by angiogenic and angiostatic CXC chemokines, and radiation is a vasculogenic stimulus. We investigated the effect of radiation on endothelial cell chemokine signaling, receptor expression, and migration and apoptosis. Human umbilical vein endothelial cells were exposed to a single fraction of 0, 5, or 20 Gy of ionizing radiation (IR). All vasculogenic chemokines (CXCL1–3/5–8) increased 3–13-fold after 5 or 20 Gy IR. 20 Gy induced a marked increase (1.6–4-fold) in angiostatic CXC chemokines. CXCR4 expression increased 3.5 and 7-fold at 48 h after 5 and 20 Gy, respectively. Bone marrow progenitor cell chemotaxis was augmented by conditioned media from cells treated with 5 Gy IR. Whereas 5 Gy markedly decreased intrinsic cell apoptosis (0 Gy = 16% ± 3.6 vs. 5 Gy = 4.5% ± 0.3), 20 Gy increased it (21.4% ± 1.2); a reflection of pro-survival angiogenic chemokine expression. Radiation induces a dose-dependent increase in pro-angiogenic CXC chemokines and CXCR4. In contrast, angiostatic chemokines and apoptosis were induced at higher (20 Gy) radiation doses. Cell migration improved significantly following 5 Gy, but not 20 Gy IR. Collectively, these data suggest that lower doses of IR induce an angiogenic cascade while higher doses produce an angiostatic profile.  相似文献   

7.
Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.  相似文献   

8.

Background

Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host–parasite interaction.

Aims

To evaluate the proteolytic activity of S. schenckii on epithelial cells.

Methods

The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host–parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay.

Results

The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr  200, 116, 97, and 70 kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell–protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor.

Conclusions

Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host–fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors.  相似文献   

9.
BackgroundSex steroid hormones have been reported to induce inflammation causing dysregulation of cytokines in prostate cancer cells. However, the underlying epigenetic mechanism has not well been studied. The objective of this study was to evaluate the effect of sex steroid hormones on epigenetic DNA methylation changes in prostate cancer cells using a signature PCR methylation array panel that correspond to 96 genes with biological function in the human inflammatory and autoimmune signals in prostate cancer. Of the 96-gene panel, 32 genes showed at least 10% differentially methylation level in response to hormonal treatment when compared to untreated cells. Genes that were hypomethylated included CXCL12, CXCL5, CCL25, IL1F8, IL13RAI, STAT5A, CXCR4 and TLR5; and genes that were hypermethylated included ELA2, TOLLIP, LAG3, CD276 and MALT1. Quantitative RT-PCR analysis of select genes represented in a cytokine expression array panel showed inverse association between DNA methylation and gene expression for TOLLIP, CXCL5, CCL18 and IL5 genes and treatment of prostate cancer cells with 5′-aza-2′-deoxycytidine with or without trichostatin A induced up-regulation of TOLLIP expression. Further analysis of relative gene expression of matched prostate cancer tissues when compared to benign tissues from individual patients with prostate cancer showed increased and significant expression for CCL18 (2.6-fold; p < 0.001), a modest yet significant increase in IL5 expression (1.17-fold; p = 0.015), and a modest increase in CXCL5 expression (1.4-fold; p = 0.25). In conclusion, our studies demonstrate that sex steroid hormones can induce aberrant gene expression via differential methylation changes in prostate carcinogenesis.  相似文献   

10.
《Cytokine》2015,75(2):287-292
Psoriasis is an autoimmune disease associated with the production of pro-inflammatory cytokines. The identification of these molecules in the pathogenesis of psoriasis facilitated the use of monoclonal antibodies to block their actions as a treatment for severe psoriasis. An increased inflammatory response has been documented in patients with obesity, a condition that is associated with the occurrence and severity of psoriasis. Osteopontin (OPN), TNF and CXCL9 levels are enhanced in patients with psoriasis, although OPN has been documented in the adipose tissue of obese patients without psoriasis. The prevalence of obesity is much higher in psoriasis patients compared with the general population. Thus, we aimed to evaluate the relationship between cytokine levels and psoriasis in the context of obesity. We compared OPN and CXCL9 plasma levels among 117 psoriasis patients and 27 healthy body mass index-matched subjects using ELISA. We also analyzed the TNF, CCL2 and CCL5 levels in a smaller subgroup of patients and matched controls. Median OPN, CCL5 and CXCL9 levels were significantly higher in psoriasis patients compared with the controls, independent of obesity. There was no difference between the median CCL2 levels in the psoriasis patients and the controls (P < 0.05), although the CCL2 levels were elevated in obese patients compared with non-obese psoriasis patients (P < 0.001). Facial involvement and the psoriasis area severity index (PASI) score were not associated (P < 0.05) with OPN levels or elevated levels of chemokines. There was no significant correlation between the OPN and CXCL9 levels or the OPN and TNF levels in psoriasis patients. This work confirms that OPN, CCL5 and CXCL9 plasma levels are higher in psoriasis patients and provides evidence that their higher levels are not a consequence of obesity. Furthermore, the results demonstrate that OPN production is independent of TNF-α and CXCL9.  相似文献   

11.
Tonic immobility (TI) test is commonly used to assess fear. Animals showing different TI durations demonstrate distinct behavior and biochemical responses to stress. However, less is known about how TI phenotype affects growth and welfare of domestic fowl. In this study, broiler chickens (Gallus gallus) were classified into short and long TI duration (STI and LTI) phenotypes and treated chronically with vehicle (CON) or corticosterone (CORT). STI broilers demonstrated significantly higher growth rate with higher breast muscle yield (P < 0.05) and liver weight relative to BW tended to be lower (P = 0.053), which was accompanied by higher serum concentration of CORT (P < 0.05) and uric acid (P < 0.01), but lower serum level of T4 (P = 0.01). CORT severely reduced body weight, as well as the relative weight of muscle, bursa of Fabricius and spleen (P < 0.001), but relative liver weight was increased (P < 0.001). CORT-treated chickens had reduced serum CORT, elevated heterophile/lymphocyte ratio, and increased serum levels of total and free T3. STI broilers displayed more preening behavior (P < 0.05), yet CORT elicited more walking behavior (P < 0.05). No difference was observed in the welfare assessment scores between STI and LTI phenotypes under basal situation, while LTI chickens showed significantly increased incidence of pad dermatitis compared to STI under CORT exposure. The results suggest that STI broilers demonstrate better growth performance and higher adaptability to stress compared to LTI chickens.  相似文献   

12.
This study investigated the concentration of decorin (DCN) in mature follicular fluid and the existence in the granulosa cells. It also investigated whether DCN is useful as a biomarker for outcomes of assisted reproductive technology (ART). A retrospective cohort study was performed involving 130 oocytes of 88 patients treated with ART because of unexplained infertility. The concentration of DCN in the follicular fluid (F-DCN) was 39.26 ng/ml (median value); it was higher than that in serum. F-DCN of the oocytes fertilized by intracytoplasmic sperm injection (ICSI) was significantly lower than that of oocytes that were not fertilized (33.24 ng/ml vs 40.18 ng/ml; P = 0.043). When a cut-off level of 34.5 ng/ml was set according to the receiver-operating characteristic curve, the fertilization rate of the oocytes from the follicles in which F-DCN was lower than the cut-off level tended to be good compared to that of the oocytes with F-DCN higher than the cut-off level (P = 0.052). DCN is less likely to be produced by the granulosa cells (GCs), because it was not detected in GCs by immunostaining and Western blot analysis. F-DCN has a possibility to be a biomarker indicating the quality of oocytes collected from the corresponding follicle.  相似文献   

13.
The objective of the study was to examine which cultured endometrial cells are the source and which are the target for lysophosphatidic acid (LPA) in the bovine uterus. LPA concentration as well as mRNA and protein expressions of the enzymes responsible for LPA synthesis (phospholipase A2: PLA2, autotaxin: AX) were greater in epithelial than in stromal cells (P < 0.05). In turn, mRNA and protein expression of LPA receptor (LPAR1) was lower in epithelial than in stromal cells (P < 0.05). We suggest that LPA in bovine endometrium is produced mainly by epithelial cells and affects mostly stromal cells acting via LPAR1.  相似文献   

14.

Background

Glucocorticoids (GCs) are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ) is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX) is mediated by GILZ.

Methods

We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays.

Results

DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway), proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced.

Conclusions

The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.  相似文献   

15.
《Process Biochemistry》2014,49(4):706-714
The chemokines eotaxin-1 (CCL11) and eotaxin-2 (CCL24), belonging to the CC chemokines family, play key roles in the inflammatory response, allergic asthma and other diseases. When expressed in Escherichia coli, chemokines are prone to form inclusion bodies devoid of biological activity, and it is hard to refold them properly. Here an expression and purification protocol for high-level production of soluble and biologically active CCL11 and CCL24 in E. coli has been established. A final yield of 8.7 mg/l for CCL11 and 3.9 mg/l for CCL24 has been obtained and the purified proteins were characterized with SDS-PAGE, mass spectrometry and circular dichroism. High binding affinity of purified chemokines with CC chemokine receptor type 3 (CCR3) has been confirmed with surface plasmon resonance (SPR) and the KD values are 3.7 × 10−7 M and 3.0 × 10−7 M, respectively, for CCL11 and CCL24. This report provides a straightforward strategy for the efficient production of soluble and biologically active chemokines in E. coli.  相似文献   

16.
《Cytokine》2013,61(3):806-811
In the intestine, bacterial components activate innate responses that protect the host. We hypothesize that bacterial components reduce Interleukin-8 (IL-8) production in intestinal epithelial cells stimulated by flagellin via the Toll-like receptor (TLR) signaling pathway. Caco-2 cells were pretreated with various doses of lipopolysaccharide (LPS), lipoteichoic acid (LTA), or low-dose flagellin (LDFL) for 24 h. Cells were then treated with flagellin (FL) 500 ng/ml (HDFL) for another 48 h. IL-8 production was measured in the cell culture medium by ELISA. Eighty-four genes in the TLR pathway were evaluated by RT Profiler PCR Array. Pathway Studio 8.0 software was used for altered pathway analysis. HDFL induced IL-8 production by 19-fold (p < 0.01). Pretreatment with LDFL at 20, 10 or 1 ng/ml reduced HDFL-induced IL-8 production by 61%, 52% and 40%, respectively (p < 0.05). LPS at 50 μg/ml decreased HDFL–induced IL-8 production by 38% (p < 0.05). HDFL up-regulated CXCL10, IL1B, IL-8, IRAK2, NF-κB1 and I-κB (all p < 0.05). Pathway Studio analysis showed that HDFL induced cell processes including inflammation, cell death and apoptosis. Pretreatment with LDFL at 10 ng/ml down-regulated FADD, FOS, MAP4K4, MyD88, TLR2, TLR3 and TNFERSF1A compared to HDFL (all p < 0.05). These down-regulated genes are integral for numerous cell functions including inflammatory response, cell death, apoptosis and infection. These results demonstrate that LPS and LDFL provoke tolerance to HDFL-induced IL-8 production. This tolerance effect was accompanied by a complex interaction of multiple genes related to inflammatory as well as other responses in the TLR pathway rather than a single gene alteration.  相似文献   

17.
Cardiac dysfunction with progressive inflammation and fibrosis is a hallmark of Chagas disease caused by persistent Trypanosoma cruzi infection. Osteopontin (OPN) is a pro-inflammatory cytokine that orchestrates mechanisms controlling cell recruitment and cardiac architecture. Our main goal was to study the role of endogenous OPN as a modulator of myocardial CCL5 chemokine and MMP-2 metalloproteinase, and its pathological impact in a murine model of Chagas heart disease. Wild-type (WT) and OPN-deficient (spp1 ?/?) mice were parasite-infected (Brazil strain) for 100 days. Both groups developed chronic myocarditis with similar parasite burden and survival rates. However, spp1 ?/? infection showed lower heart-to-body ratio (P < 0.01) as well as reduced inflammatory pathology (P < 0.05), CCL5 expression (P < 0.05), myocyte size (P < 0.05) and fibrosis (P < 0.01) in cardiac tissues. Intense OPN labeling was observed in inflammatory cells recruited to infected heart (P < 0.05). Plasma concentration of MMP-2 was higher (P < 0.05) in infected WT than in spp1 ?/? mice. Coincidently, specific immunostaining revealed increased gelatinase expression (P < 0.01) and activity (P < 0.05) in the inflamed hearts from T. cruzi WT mice, but not in their spp1 ?/? littermates. CCL5 and MMP-2 induction occurred preferentially (P < 0.01) in WT heart-invading CD8+ T cells and was mediated via phospho-JNK MAPK signaling. Heart levels of OPN, CCL5 and MMP-2 correlated (P < 0.01) with collagen accumulation in the infected WT group only. Endogenous OPN emerges as a key player in the pathogenesis of chronic Chagas heart disease, through the upregulation of myocardial CCL5/MMP-2 expression and activities resulting in pro-inflammatory and pro-hypertrophic events, cardiac remodeling and interstitial fibrosis.  相似文献   

18.
《Hormones and behavior》2012,61(5):666-675
Glucocorticoids are thought to mediate the disruption of parental behavior in response to acute and chronic stress. Previous research supports their role in chronic stress; however, no study has experimentally tested the effects of acute glucocorticoid elevation on paternal behavior. We tested the prediction that acute corticosterone (CORT) increases would decrease paternal behavior in California mouse fathers and would lead to longer-term effects on reproductive success, as even short-term increases in CORT have been shown to produce lasting effects on the hypothalamic-pituitary-adrenal axis. First-time fathers were injected with 30 mg/kg CORT, 60 mg/kg CORT or vehicle, or left unmanipulated. Interactions between the male and its pup(s) were recorded 1.5–2 h after injection and scored for paternal and non-paternal behavior. Treatment groups were combined into control (unmanipulated + vehicle, n = 15) and CORT (30 mg/kg + 60 mg/kg, n = 16) for analysis based on resulting plasma CORT concentrations. CORT treatment did not alter paternal or non-paternal behaviors or any long-term measures (male body mass or temperature, pup growth rate, pup survival, interbirth interval, number or mass of pups born in the second litter). Fathers showed a significant rise in body mass at day 30 postpartum, followed by a decrease in body mass after the birth of the second litter; however, this pattern did not differ between the CORT and control groups. In summary, acute elevation of plasma CORT did not alter direct paternal behavior, body mass, or reproductive outcomes, suggesting that acute CORT elevation alone does not overtly disrupt paternal care in this biparental mammal.  相似文献   

19.
Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16α-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas’ disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite’s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with Ki values of 21.5 ± 0.5 and 4.8 ± 0.3 μM, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC50 of 86 ± 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD50 of 12 ± 8 μM. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition.  相似文献   

20.
Both increased de novo fatty acid synthesis and higher neutral lipid accumulation are a common phenotype observed in aggressive breast cancer cells, making lipid metabolism a promising target for breast cancer prevention. In the present studies, we demonstrate a novel effect of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D (1,25(OH)₂D) on lipid metabolism in malignant breast epithelial cells. Treatment of MCF10CA1a breast epithelial cells with 1,25(OH)₂D (10 nM) for 5 and 7 days decreased the level of triacylglycerol, the most abundant form of neutral lipids, by 20%(±3.9) and 50%(±5.9), respectively. In addition, 1,25(OH)₂D treatment for 5 days decreased palmitate synthesis from glucose, the major fatty acid synthesized de novo (48% ± 5.5 relative to vehicle). We have further identified the anaplerotic enzyme pyruvate carboxylase (PC) as a target of 1,25(OH)₂D-mediated regulation and hypothesized that 1,25(OH)₂D regulates breast cancer cell lipid metabolism through inhibition of PC. PC mRNA expression was down-regulated with 1,25(OH)₂D treatment at 2 (73% ± 6 relative to vehicle) and 5 (56% ± 8 relative to vehicle) days. Decrease in mRNA abundance corresponded with a decrease in PC protein expression at 5 days of treatment (54% ± 12 relative to vehicle). Constitutive overexpression of PC in MCF10CA1a cells using a pCMV6-PC plasmid inhibited the effect of 1,25(OH)₂D on both TAG accumulation and de novo palmitate synthesis from glucose. Together, these studies demonstrate a novel mechanism through which 1,25(OH)₂D regulates lipid metabolism in malignant breast epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号