首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the yeast strain P5 isolated from a mangrove system was identified to be a strain of Aureobasidium pullulans var. melanogenum and was found to be able to secrete a large amount of heavy oil into medium. After optimization of the medium for heavy oil production and cell growth by the yeast strain P5, it was found that 120.0 g/l of glucose and 0.1 % corn steep liquor were the most suitable for heavy oil production. During 10-l fermentation, the yeast strain P5 produced 32.5 g/l of heavy oil and cell mass was 23.0 g/l within 168 h. The secreted heavy oils contained 66.15 % of the long-chain n-alkanes and 26.4 % of the fatty acids, whereas the compositions of the fatty acids in the yeast cells were only C16:0 (21.2 %), C16:1(2.8 %), C18:0 (2.9 %), C18:1 (39.8 %), and C18:2 (33.3 %). We think that the secreted heavy oils may be used as a new source of petroleum in marine environments. This is the first report of yeast cells which can secrete the long-chain n-alkanes.  相似文献   

2.
Bioprocess and Biosystems Engineering - Microbial oils can be used for biodiesel production and fumaric acid (FA) is widely used in the food and chemical industries. In this study, the production...  相似文献   

3.
Currently, single cell oils (SCO) attract much attention because of their bi-function as a supplier of functional oils and feedstock for biodiesel production. However, high fermentation costs prevent their further application, and the possibility and potential of their industrialization is suspected. Therefore, various low-cost, hydrophilic and hydrophobic substrates were utilized for SCO production. Of these substrates, lignocellulosic biomass, which is the most available and renewable source in nature, might be an ideal raw material for SCO production. Although many reviews on SCO have been published, few have focused on SCO production from low-cost substrates or evaluated the possibility and potential of its industrialization. Therefore, this review mainly presents information on SCO and its production using low-cost substrates and mostly focuses on lignocellulosic biomass. Finally, the possibility and potential of SCO industrialization is evaluated.  相似文献   

4.
Biodiesel (BD) is commonly produced from refined vegetable oils by alkali-catalyzed methanolysis. Unrefined vegetable oils are economically attractive but not suitable for alkali catalysis because of their high content of free fatty acids (FFAs). Novozym 435 (immobilized Candida antarctica lipase B), which accepts both FFA and oil as substrates, was, therefore, employed to convert unrefined palm oil to BD. Three different methanolysis methods, namely, t-butanol mediated system (method-1), LiCl solution based controlled release system for methanol (method-2) and solvent-free system with three successive additions of methanol (method-3), were compared. The optimal methanol to oil molar ratios in the method-1, -2 and -3 are 6:1, 3:1 and 3:1, respectively. BD yield at an optimal methanol concentration reaches 91–92% after 10, 20 and 24 h in the method-1, -2 and -3, respectively. BD yield remains the same over five repeated cycles in the method-1, while it drops to 68 and 71% by the fifth cycle in the method-2 and -3, respectively. The results show that the method-1 is the most effective for production of BD from a low cost feedstock like unrefined palm oil.  相似文献   

5.
Yan J  Yan Y  Liu S  Hu J  Wang G 《Bioresource technology》2011,102(7):4755-4758
A dual modification procedure composed of cross-linking and protein coating with K2SO4 was employed to modify Geotrichum sp. lipase for catalyzing biodiesel production from waste cooking oil. Compared to single modification of protein coating with K2SO4, the dual modification of cross-linking and lipase coating improved catalytic properties in terms of thermostable stability, organic solvent tolerance, pH stability and operational stability in biodiesel production process, although biodiesel yield and initial reaction rate for CLPCMCs were not improved. After five successive batch reactions, CLPCMCs could still maintain 80% of relative biodiesel yield. CLPCMCs retained 64% of relative biodiesel yield after incubation in a pH range of 4-6 for 4 h, and 85% of relative biodiesel yield after incubation in a range of 45-50 °C for 4 h. CLPCMCs still maintained 83% of relative biodiesel yield after both treated in polar organic solvent and non-polar organic solvent for 4 h.  相似文献   

6.
Process for biodiesel production from Cryptococcus curvatus   总被引:1,自引:0,他引:1  
The objective of the current report is process optimization for economical production of lipids by the well known oleaginous yeast Cryptococcus curvatus and conversion of the lipids to biodiesel. A high cell density fed-batch cultivation on low cost substrate viz. crude glycerol resulted in a dry biomass and oil yield of up to 69 g/L and 48% (w/w), respectively. The process was scaled up easily to 26 L. The oil extraction process was also optimized using environmentally safe solvents. The oil profile indicated a high oleic acid content followed by palmitic acid, stearic acid and linoleic acid. The oil was trans-esterified to biodiesel and thoroughly characterized. This is the first end to end report on production of biodiesel from the C. curvatus oil.  相似文献   

7.
Utilizing whole cell biocatalyst instead of free or immobilized enzyme is a potential way to reduce the cost of catalyst in lipase-catalyzed biodiesel production. Rhizopus oryzae (R. oryzae) IFO4697 whole cell immobilized within biomass support particles (BSPs) was used for the methanolysis of soybean oil for biodiesel production in this paper. tert-Butanol was demonstrated to be an ideal reaction medium, in which the negative effects caused by substrate methanol could be eliminated effectively. A central composite design was adopted to study the effect of tert-butanol quantity, methanol quantity, water content and dry biomass of the immobilized cell on biodiesel (methyl ester) yield. Each factor was studied in five levels. Using response surface methodology, a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. Biodiesel yield of 72% could be obtained under the optimal conditions and further verification experiments confirmed the validity of the predicted model.  相似文献   

8.
An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751).  相似文献   

9.
Perspectives of microbial oils for biodiesel production   总被引:7,自引:0,他引:7  
Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.  相似文献   

10.
Guo F  Fang Z  Tian XF  Long YD  Jiang LQ 《Bioresource technology》2011,102(11):6469-6472
Catalytic conversion of un-pretreated Jatropha oil with high-acid value (13.8 mg KOH/g) to biodiesel was studied in ionic liquids (ILs) with metal chlorides. Several commercial ILs were used to catalyze the esterification of oleic acid. It was found that 1-butyl-3-methylimidazolium tosylate ([BMIm][CH3SO3]; a Brønsted acidic IL) had the highest catalytic activity with 93% esterification rate for oleic acid at 140 °C but only 12% biodiesel yield at 120 °C. When FeCl3 was added to [BMIm][CH3SO3], a maximum biodiesel yield of 99.7% was achieved at 120 °C. Because metal ions in ILs supplied Lewis acidic sites, and more of the sites could be provided by trivalent metallic ions than those of bivalent ones. It was also found that the catalytic activity with bivalent metallic ions increased with atomic radius. Mixture of [BMIm][CH3SO3] and FeCl3 was easily separated from products for reuse to avoid producing pollutants.  相似文献   

11.
Lipids enriched in polyunsaturated fatty acids are very susceptible to oxidation, causing the formation of potentially harmful oxidized products. Hence, it is critical to keep the temperature as low as possible during reaction and storage. In this study, five commercial immobilized lipases were evaluated for their capability to produce novel structured lipids (SLs) enriched with medium-chain fatty acids (MCFAs) through acidolysis of single cell oil (SCO) with capric acid. Among the examined lipases, NS40086 and Lipozyme RM IM showed the highest incorporation degree. The acidolysis reactions resulted in an obvious variation in the fatty acids composition as well as their positional distribution. The obtained SLs contained (33.58 %–34.09 %) capric acid at sn-1, 3 positions with increasing the content of arachidonic acid at the sn-2 position up to (49.82 %–50.25 %). The NS40086 lipase displayed 1, 3 regiospecificity towards the TAG of SCO. The acidolysis reactions using NS40086 lipase resulted in a generation of 23 TAG molecular species containing capric acid. Moreover, the NS40086 lipase was more active than Lipozyme RM IM at relatively low temperatures (35 °C and 40 °C), which could be used effectively as a promising biocatalyst in lipid synthesis.  相似文献   

12.
The present study was carried out to investigate cyanobacteria as a potential source for biodiesel production isolated from fresh water bodies of Sri Lanka. Semi mass culturing and mass culturing were carried out to obtain biomass for extracting total lipids. Fatty acid methyl ester (FAME) or biodiesel was produced from extracted lipid by trans-esterification reaction. FAME component was identified using gas chromatography (GC). Atotal of 74 uni-algal cultures were obtained from Biofuel and Bioenergy laboratory of the National Institute of Fundamental Studies (NIFS), Kandy, Sri Lanka. The total lipid content was recorded highest in Oscillatoria sp. (31.9 ± 2.01% of dry biomass) followed by Synechococcus sp. (30.6 ± 2.87%), Croococcidiopsis sp. (22.7 ± 1.36%), Leptolyngbya sp. (21.15 ± 1.99%), Limnothrixsp. (20.73 ± 3.26%), Calothrix sp. (18.15 ± 4.11%) and Nostoc sp. (15.43 ± 3.89%), Cephalothrixsp. (13.95 ± 4.27%), Cephalothrix Komarekiana (13.8 ± 3.56%) and Westiellopsisprolifica (12.80 ± 1.97%). FAME analysis showed cyanobacteria contain Methyl palmitoleate, Linolelaidic acid methyl ester, Cis-8,11,14-eicosatrienoic acid methyl ester, Cis-10-heptadecanoic acid methyl ester, Methyl myristate, Methyl pentadecanoate, Methyl octanoate, Methyl decanoate, Methyl laurate, Methyl tridecanoate, Methyl palmitoleate, Methyl pentadeconoate, Methyl heptadeconoate, Linolaidic acid methyl ester, Methyl erucate, Methyl myristate, Myristoloeic acid, Methyl palmitate, Cis-9-oleic acid methyl ester, Methyl arachidate and Cis-8,11,14-ecosatrieconoic acid methyl ester. The present study revealed that cyanobacteria isolated from Sri Lanka are potential source for biodiesel industry because of their high fatty acid content. Further studies are required to optimize the mass culture conditions to increase thelipid content from cyanobacterial biomass along with the research in the value addition to the remaining biomass.  相似文献   

13.
Production of biodiesel from edible plant oils is quickly expanding worldwide to fill a need for renewable, environmentally-friendly liquid transportation fuels. Due to concerns over use of edible commodities for fuels, production of biodiesel from non-edible oils including microbial oils is being developed. Microalgae biodiesel is approaching commercial viability, but has some inherent limitations such as requirements for sunlight. While yeast oils have been studied for decades, recent years have seen significant developments including discovery of new oleaginous yeast species and strains, greater understanding of the metabolic pathways that determine oleaginicity, optimization of cultivation processes for conversion of various types of waste plant biomass to oil using oleaginous yeasts, and development of strains with enhanced oil production. This review examines aspects of oleaginous yeasts not covered in depth in other recent reviews. Topics include the history of oleaginous yeast research, especially advances in the early 20th century; the phylogenetic diversity of oleaginous species, beyond the few species commonly studied; and physiological characteristics that should be considered when choosing yeast species and strains to be utilized for conversion of a given type of plant biomass to oleochemicals. Standardized terms are proposed for units that describe yeast cell mass and lipid production.  相似文献   

14.
Increased costs and limited availability of traditional lipid sources for biodiesel production encourage researchers to find more sustainable feedstock at low prices. Microbial lipid stands out as feedstock replacement for vegetable oil to convert fatty acid esters. In this study, the potential of three isolates of filamentous fungi (Mucor circinelloides URM 4140, M. hiemalis URM 4144, and Penicillium citrinum URM 4126) has been assessed as single-cell oil (SCO) producers. M. circinelloides 4140 had the highest biomass concentration with lipid accumulation of up to 28?wt% at 120?hr of cultivation. The profile of fatty acids revealed a high content of saturated (SFA) and monounsaturated fatty acids (MUFA), including palmitic (C16:0, 33.2–44.1?wt%) and oleic (C18:1, 20.7–31.2?wt%) acids, with the absence of polyunsaturated fatty acids (PUFA) having more than four double bonds. Furthermore, the predicted properties of biodiesel generated from synthesized SCOs have been estimated by using empirical models which were in accordance with the limits imposed by the USA (ASTM D6715), European Union (EN 14214), and Brazilian (ANP 45/2014) standards. These results suggest that the assessed filamentous fungus strains can be considered as alternative feedstock sources for high-quality biofuel production.  相似文献   

15.
Summary Amino acid analyses were undertaken on single cell protein (SCP) produced by thermotolerant strains ofKluyveromyces marxianus var.marxianus grown on sugar cane molasses at 40°C. The maximum conversion of available sugars to biomass at 45°C was only 10.8% (g dry wt.·g–1 total sugars). The amino acid composition of the SCP did not differ markedly from that reported for other yeast species.  相似文献   

16.
【背景】出芽短梗霉可发酵葡萄糖生成聚苹果酸,但存在转化率和转化效率低等瓶颈,阻碍其实现商业化生产。【目的】通过优化发酵培养条件,提高出芽短梗霉的聚苹果酸产量、糖酸转化率和生产强度。【方法】采用单因素试验优化适宜出芽短梗霉BK-10菌株产生聚苹果酸的培养条件,通过Plackett-Burman法对培养基组分筛选显著性影响因素,并对其培养基中无机盐进行正交试验优化,最后进行5 L发酵罐验证。【结果】最优培养基配方和培养条件:100 g/L葡萄糖,1.5 g/L尿素,0.20 g/L KH_2PO_4,0.20 g/L ZnSO_4,0.05 g/L MgSO_4,0.75 g/L KCl,30 g/L CaCO_3,0.01%吐温-80,发酵温度26°C,250 mL摇瓶装液量50 mL。【结论】通过优化,聚苹果酸的糖酸转化率达到0.71 g/g,生产强度达到0.89 g/(L·h),较优化前分别提高了18.33%和71.15%,为发酵葡萄糖合成聚苹果酸进而生产L-苹果酸工艺的工业化生产奠定经济性基础。  相似文献   

17.
A strain of Aspergillus niger isolated from atmospherically exposed bread and Jatropha curcas seed was utilized as a whole‐cell biocatalyst for palm oil methanolysis to produce fatty acid methyl esters (FAME), or biodiesel. The A. niger strain had a lipase activity of 212.58 mU mL?1 after 144 h incubation at 25 °C with an initial pH value of 6.5, using 7% polypeptone (w/w on basal medium) as the nitrogen source and 3% olive oil (w/w on basal medium) as a carbon source. The A. niger cells spontaneously immobilized within polyurethane biomass support particles (BSPs) during submerged fermentation. Thereafter, the methanolysis of palm oil was achieved via a three‐step addition of methanol in the presence of BSPs‐immobilized with A. niger cells. The influence of water content, reaction temperature and enzyme concentration on reaction rate was investigated. An 8% water content and a temperature of 40 °C in the presence of 30 immobilized BSPs, resulted in an 87% FAME yield after 72 h.  相似文献   

18.
Extraction of oil from microalgae for biodiesel production: A review   总被引:2,自引:0,他引:2  
The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion.  相似文献   

19.
In the present paper a factor analysis is presented for the enzymatic transesterification of waste oil for biodiesel production. The experimental data on batch reactor evidence two key variables: enzyme loading and mixing conditions. These variables were subjected to a factor analysis and their combined effect on the reaction performance was determined. Response surface methodology (RSM) was used based on a linear first order model (steepest ascent method) and on a second order one in proximity of the optimal solution. The result was a model able to predict reaction performance within the range of mixing rates and enzyme amount considered for model formulation and outside of it, as shown in the final validation. Best performances were obtained at high stirring and high enzyme loading.  相似文献   

20.
Perspectives for biotechnological production of biodiesel and impacts   总被引:3,自引:0,他引:3  
In recent years, biological ways for biodiesel production have drawn an increasing attention and compared to chemical approaches, lipase-mediated alcoholysis for biodiesel production has many advantages. Currently, there are extensive reports about enzyme-mediated alcoholysis for biodiesel production, and based on the application forms of biocatalyst, the related research can be classified into immobilized lipase, whole cell catalyst, and liquid lipase-mediated alcoholysis for biodiesel production, respectively. This mini-review is focusing on the study of the aforementioned three forms of biocatalyst for biodiesel production, as well as its impacts and prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号