首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

2.
Plant biodiversity–productivity relationships become stronger over time in grasslands, forests, and agroecosystems. Plant shoot and root litter is important in mediating these positive relationships, yet the functional role of plant litter remains overlooked in long-term experiments. We propose that plant litter strengthens biodiversity–ecosystem functioning relationships over time in four ways by providing decomposing detritus that releases nitrogen (N) over time for uptake by existing and succeeding plants, enhancing overall soil fertility, changing soil community composition, and reducing the impact of residue-borne pathogens and pests. We bring new insights into how diversity–productivity relationships may change over time and suggest that the diversification of crop residue retention through increased residue diversity from plant mixtures will improve the sustainability of food production systems.  相似文献   

3.
Ecological stoichiometry (ES) has become one of the most pervasive theoretical frameworks in environmental sciences and biology in the last two decades. ES allows predicting processes on all organizational levels from subcellular structures to ecosystems by relating the elemental composition and demand of organisms to the relative availability of resources. However, ES has been rarely used to understand and predict the relationship between biodiversity and ecosystem functioning (BEF), although ES would be ideally suited as it makes predictions on both population processes underlying biodiversity as well as on matter transformations underlying ecosystem processes. Here, we propose to link the two fields of research on ES and BEF relationships and highlight a number of potential avenues for further research. First, we cast a stoichiometric view on drivers of biodiversity change. Second, we address the stoichiometric underpinning of biodiversity–productivity relationships. Third, we discuss potential interactions between stoichiometry and diversity in a food web context.  相似文献   

4.
生物多样性常常和生态系统多功能性(生态系统同时提供多个生态系统功能的能力)正相关。然而,生物多样性与生态系统多功能性的关系是否依赖于生态系统功能的数目有诸多争议。其中,生物多样性对生态系统多功能性的影响或许不随生态系统功能数目的变化而变化,或者随生态系统功能数目的增多而增强。我们期望通过研究不同生态系统多功能性指数的统计原理来解决这些争议。 我们使用了模型模拟和一系列来自不同空间尺度(从局域到全球)和不同生物群系(温带和高寒草地、森林和干旱地)的经验数据。我们回顾了量化生态系统多功能性的三种方法,包括平均值法、加和法和阈值法。我们发现随着生态系统功能数目的增加,生物多样性与生态系统多功能性的关系要么不变,要么增强。这些结果可由平均和加和的多功能性指数的统计原理来解释。具体来讲,当利用生态系统功能的平均值计算多功能性指数时,由于多样性对多功能性的效应等于多样性对单个生态系统功能效应的平均值,所以不会随生态系统功能数目的变化而变化。同样的道理,当利用单个生态系统的加和值计算多功能性指数时,多样性的效应会随着生态系统功能数目的增加而增强。我们提出了一个改进的多功能性指数,将平均或加和多功能性指数转化为标准化的多功能性指数, 以便于对不同研究的结果进行比较。此外,我们提出了基于变量数值范围的标准化方法来解决阈值法的数学假象问题(多样性效应随生态系统功能数目的增加而增强)。我们的研究结果表明,量化多功能性指数的方法不同,结果也不同。因此,有必要加深对不同方法数理基础的理解。而标准化的多功能性指数为比较不同研究中的生物多样性与生态系统多功能性的关系提供了有效的方法。  相似文献   

5.
6.
Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity''s role in maintaining ES (B–ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity–ecosystem functioning (B–EF) field provides an alternate context for examining biodiversity''s mechanistic role in shaping ES, focusing on species'' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B–ES research to look towards underlying B–EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B–EF findings to identify key areas for future developments in B–ES research. We highlight a means by which B–ES research may begin to identify how and when multiple underlying B–EF relationships may scale to final ES delivery and trade-offs.  相似文献   

7.
The loss of genetic diversity is accelerating due to habitat loss and population reduction caused by global change and anthropologenic activities. For species-poor ecosystems, the effect of genetic diversity on ecosystem functioning may not be smaller than that of species diversity. Therefore, understanding the relationship between genetic diversity and ecosystem functioning (GD-EF) and its underlying mechanisms is important for biodiversity conservation, responses of ecosystems to environmental change and ecological restoration. Here, we reviewed the studies on the effects of plant genetic diversity on ecosystem structures (community structure of the higher tropic level) and ecosystem functions (primary production, nutrient cycling and ecosystem stability), and the mechanisms underlying these relationships. We also discussed the influence of functional diversity on GD-EF, the comparison of effects of the genetic and species diversity on ecosystem functioning, and the application of GD-EF in the ecological restorations. We finally pointed out the limitations in current studies to provide references for the future: (1) further studies on the mechanisms of GD-EF are needed; (2) no study has evaluated the influence of genetic diversity on maltifunctinarity; (3) the impacts of different measurements of genetic diversity on ecosystem functioning are unclear; (4) there are lack of long-time GD-EF studies and GD-EF studies conducted at multidimensional scales; (5) the relative importance of genetic diversity and other factors on ecosystem functioning in the nature is unclear. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

8.
The Biodiversity – Ecosystem Functioning (B–EF) relationship remains a topic of ongoing debate with most studies focusing on primary productivity, and documenting that this relationship takes many forms. It remains unclear if biodiversity drives productivity or productivity shapes biodiversity or the relationship is bidirectional. B-EF studies explore almost exclusively the relationship between species richness and ecosystem functioning, while the role of biotic interactions, a key component of ecosystem functioning, has been neglected. Here, using data of 80 local plant–pollinator networks on 20 Aegean islands, and of gross primary productivity (GPP) from the MODIS satellite, we explored the bidirectional relationship between interaction network structure (nestedness and specialization), species richness (plants and pollinators) and mean and inter-annual variability of GPP. We found that nestedness and specialisation of plant–pollinator networks is driven by mean GPP. However, specialisation alone was a significant predictor of mean GPP, implying that networks tend to be more specialised in low-productivity areas. Pollinator species richness exerted a strong effect on mean GPP with the remaining factors playing a minor role, while the effect of mean GPP on pollinator species richness was weaker. Furthermore, the nestedness of plant–pollinator networks drives inter-annual variability of GPP with more nested networks displaying less variability, which is in accordance with the predictions of the insurance hypothesis. Plant and pollinator species richness were also associated with inter-annual variability of GPP.  相似文献   

9.
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species’ functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity–ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.  相似文献   

10.
An enormous recent research effort focused on how plant biodiversity (notably species richness) influences ecosystem functioning, usually through experiments in which diversity is varied through random draws of species from a species pool. Such experiments are increasingly used to predict how species losses influence ecosystem functioning in ‘real’ ecosystems. However, this assumes that comparisons of experimental communities with low vs high species richness are analogous to comparisons of natural communities from which species either have or have not been lost. I explore the validity of this assumption, and highlight difficulties in using such experiments to draw conclusions about the ecosystem consequences of biodiversity loss in natural systems. Notably, these experiments do not mimic what happens in real ecosystems either when local extinctions occur or when species losses are offset by gains of new species. Despite limitations, this single experimental approach for studying how biodiversity loss affects ecosystems has often been advocated and implemented at the expense of other approaches; this limits understanding of how natural ecosystems respond to biodiversity loss. I conclude that a broader spectrum of approaches, and more explicit consideration of how species losses and gains operate in concert to influence ecosystems, will help progress this field.  相似文献   

11.
12.
The relationship between biodiversity and ecosystem functions of grasslands has received increasing attention in recent years. So far, experiments were mostly conducted in experimental grasslands. We used a different approach on permanent grassland by applying herbicides selective against either dicots or monocots. This allowed us to alter plant species composition and evenness and to obtain altered constellations of functional group abundances without deliberate introduction of new species or continued disturbance by weeding. The resulting swards were subjected to different management intensities in terms of cutting regime and fertilization. Compared to the baseline data before herbicide application, within one year, the combination of treatments, especially the herbicide application, led to a broad variety of swards with the herbicide treatment alone accounting for more than 25% of the variance in composition. We conclude that the application of specific herbicides is a method highly suitable for creating different sward types, because the swards differed significantly in species number, evenness and composition of functional groups without showing signs of disturbance, as neither the area of open soil nor the proportion of annual colonizer species increased.  相似文献   

13.
MethodsGerminated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography.ConclusionsThe results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system.  相似文献   

14.
15.
The influence of biodiversity on ecosystem functioning is a major concern of ecological research. However, the biodiversity–ecosystem functioning relationship has very often been studied independently from the mechanisms allowing coexistence. By considering the effects of dispersal and niche partitioning on diversity, the metacommunity perspective predicts a spatial scale-dependence of the shape of the relationship. Here, we present experimental evidence of such scale-dependent patterns. After approximately 500 generations of diversification in a spatially heterogeneous environment, we measured functional diversity (FD) and productivity at both local and regional scales in experimental source-sink metacommunities of the bacterium Pseudomonas fluorescens SBW25. At the regional scale, environmental heterogeneity yielded high levels of FD and we observed a positive correlation between diversity and productivity. At the local scale, intermediate dispersal increased local FD through a mass effect but there was no correlation between diversity and productivity. These experimental results underline the importance of considering the mechanisms maintaining biodiversity and the appropriate spatial scales in understanding its relationship with ecosystem functioning.  相似文献   

16.
The genetics of marine populations is a subject that has made little progress compared with the effort spent on the terrestrial environment. This is so despite “applied” aspects such as stock management, marine aquaculture, creation of reserves, conservation of the coastal zones, taxonomy, and protection of species. The crowded and dispersive marine environment, with its steep physical gradients, favours the existence of a planktonic larval stage for most species. The attendant high fecundity has important consequences for selection differentials and dispersal and therefore for the evolution of genetic structures. These features must be taken into account in order to understand the origin and maintenance of marine biodiversity and, in some cases, to manage it.In this article, after a definition of genetic diversity among other aspects of biodiversity, special features of the marine environment and processes governing genetic diversity are given together with the molecular tools required to study it. Then, an overview of the interesting scientific questions in marine biodiversity research is given concerning:
the population structure as a function of dispersal systems and spatial constraints: gene flow and speciation in a dispersive environment,
the phylogeography and historical biogeography of marine ecosystems;
the functional and adaptive aspects of polymorphism: larval phase and genetic control of recruitment.
Some uses of genetic diversity for assessment, conservation and protection purposes are also detailed. Organismal (specific) diversity does not enter the scope of the article.  相似文献   

17.
Plant and Soil - Plant diversity – ecosystem processes relationships are essential to our understanding of ecosystem functioning. We aimed at disentangling the nature of such relationships in...  相似文献   

18.
19.
Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stocks, stand age, and tree diversity might influence carbon–biodiversity relationships. Using a large dataset (>4600 heterotrophic species of 23 taxonomic groups) from secondary, subtropical forests, we tested how multitrophic diversity and diversity within trophic groups relate to aboveground, belowground, and total carbon stocks at different levels of tree species richness and stand age. Our study revealed that aboveground carbon, the key component of climate-based management, was largely unrelated to multitrophic diversity. By contrast, total carbon stocks—that is, including belowground carbon—emerged as a significant predictor of multitrophic diversity. Relationships were nonlinear and strongest for lower trophic levels, but nonsignificant for higher trophic level diversity. Tree species richness and stand age moderated these relationships, suggesting long-term regeneration of forests may be particularly effective in reconciling carbon and biodiversity targets. Our findings highlight that biodiversity benefits of climate-oriented management need to be evaluated carefully, and only maximizing aboveground carbon may fail to account for biodiversity conservation requirements.  相似文献   

20.
This article provides instructors with guidelines for teaching simple experimental design for the comparison of two treatment groups. Two designs with specific examples are discussed along with common misconceptions that undergraduate students typically bring to the experiment design process. Features of experiment design that maximize power and minimize the effects of interindividual variation, thus allowing reduction of sample sizes, are described. Classroom implementation that emphasizes student-centered learning is suggested, and thought questions, designed to help students discover and name the basic principles of simple experiment design for themselves, are included with an answer key.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号