首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2–2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AADD485G variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aadD485G) ABE products resulted in a blend with nearly 50 wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9 g L−1 while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80 wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8 g L−1 of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was identified as the first heterologous chaperone that significantly increases solvent titers above wild type C. acetobutylicum levels, which can be combined with metabolic engineering to further increase solvent production.  相似文献   

2.
A new isolate of the solvent-producing Clostridium acetobutylicum YM1 was used to produce butanol in batch culture fermentation. The effects of glucose concentration, butyric acid addition and C/N ratio were studied conventionally (one-factor-at-a-time). Moreover, the interactions between glucose concentration, butyric acid addition and C/N ratio were further investigated to optimize butanol production using response surface methodology (RSM). A central composite design was applied, and a polynomial regression model with a quadratic term was used to analyze the experimental data using analysis of variance (ANOVA). ANOVA revealed that the model was highly significant (p < 0.0001) and the effects of the glucose and butyric acid concentrations on butanol production were significant. The model validation experiment showed 13.82 g/L butanol was produced under optimum conditions. Scale up fermentation in optimized medium resulted in 17 g/L of butanol and 21.71 g/L of ABE. The experimental data of scale up in 5 L bioreactor and flask scale were fitted to kinetic mathematical models published in the literature to estimate the kinetic parameters of the fermentation. The models used gave the best fit for butanol production, biomass and glucose consumption for both flask scale and bioreactor scale up.  相似文献   

3.
The efficient fermentative production of solvents (acetone, n-butanol, and ethanol) from a lignocellulosic feedstock using a single process microorganism has yet to be demonstrated. Herein, we developed a consolidated bioprocessing (CBP) based on a twin-clostridial consortium composed of Clostridium cellulovorans and Clostridium beijerinckii capable of producing cellulosic butanol from alkali-extracted, deshelled corn cobs (AECC). To accomplish this a genetic system was developed for C. cellulovorans and used to knock out the genes encoding acetate kinase (Clocel_1892) and lactate dehydrogenase (Clocel_1533), and to overexpress the gene encoding butyrate kinase (Clocel_3674), thereby pulling carbon flux towards butyrate production. In parallel, to enhance ethanol production, the expression of a putative hydrogenase gene (Clocel_2243) was down-regulated using CRISPR interference (CRISPRi). Simultaneously, genes involved in organic acids reassimilation (ctfAB, cbei_3833/3834) and pentose utilization (xylR, cbei_2385 and xylT, cbei_0109) were engineered in C. beijerinckii to enhance solvent production. The engineered twin-clostridia consortium was shown to decompose 83.2 g/L of AECC and produce 22.1 g/L of solvents (4.25 g/L acetone, 11.5 g/L butanol and 6.37 g/L ethanol). This titer of acetone-butanol-ethanol (ABE) approximates to that achieved from a starchy feedstock. The developed twin-clostridial consortium serves as a promising platform for ABE fermentation from lignocellulose by CBP.  相似文献   

4.
The cellulolytic Clostridium cellulovorans has been engineered to produce n-butanol from low-value lignocellulosic biomass by consolidated bioprocessing (CBP). The objective of this study was to establish a robust cellulosic biobutanol production process using a metabolically engineered C. cellulovorans. First, various methods for the pretreatment of four different corn-based residues, including corn cob, corn husk, corn fiber, and corn bran, were investigated. The results showed that better cell growth and a higher concentration of n-butanol were produced from corn cob that was pretreated with sodium hydroxide. Second, the effects of different carbon sources (glucose, cellulose and corn cob), basal media and culture pH values on butanol production were evaluated in the fermentations performed in 2-L bioreactors to identify the optimal CBP conditions. Finally, the engineered C. cellulovorans produced butanol with final concentration >3 g/L, yield >0.14 g/g, and selectivity >3 g/g from pretreated corn cob at pH 6.5 in CBP. This study showed that the fermentation process engineering of C. cellulovorans enabled a high butanol production directly from agricultural residues.  相似文献   

5.
The aim of this study was to determine if decanter cake waste from a palm oil mill could be used as a renewable substrate for biobutanol production. Decanter cake waste was first hydrolyzed to fermentable sugars by nitric acid and detoxified by activated-charcoal. The detoxified hydrolysate supplemented with whey protein and ammonium sulfate as cheap nitrogen sources, was used for butanol production by growing cells of Clostridium beijerinckii. The detoxified hydrolysate was also used as a co-substrate for direct conversion of butyric acid to butanol in a nitrogen-free medium. By these two steps, C. beijerinckii produced 3.42 g/L of butanol with a yield of 0.28 C-mol butanol/C-mol carbon in the first step and produced 6.94 g/L of butanol with a yield of 0.47 C-mol butanol/C-mol carbon in the second step. This study has showed that decanter cake waste could serve as a low-cost substrate for biobutanol production.  相似文献   

6.
Higher energy content and hydrophobicity make bio-based n-butanol a preferred building block for chemical and biofuels manufacturing. Butanol is obtained by Clostridium sp. based ABE fermentation process. While the ABE process is well understood, the enzyme systems involved have not been elucidated in detail. The important enzyme ß-hydroxybutyryl CoA dehydrogenase from Clostridium acetobutylicum ATCC 824 (Hbd) was purified and characterized. Surprisingly, Hbd shows extremely high temperature (T > 60 °C), pH (4–11) and solvent (1-butanol, isobutanol, ethanol) stability. Hbd catalyzes acetoacetyl CoA hydration to ß-hydroxybutyryl CoA up to pH 9.5, where the reaction is reversed. Substrate (acacCoA, ß-hbCoA) and cofactor (NADH, NAD+, NADPH and NADP+) specificities were determined. We identified NAD+ as an uncompetitive inhibitor. Identification of process relevant enzymes such as Hbd is key to optimize butanol production via cellular or cell-free enzymatic systems.  相似文献   

7.
Butanol and butyric acid produced from acetone-butanol-ethanol (ABE) fermentation can be used to produce butyl butyrate, an important fragrance ester. However, low levels of butanol and butyric acid need to be purified from culture media first with energy-intensive distillation processes. In this study, a triphasic (organic/aqueous/fluorous) system is developed to esterify butanol and butyric acid in spent culture media into butyl butyrate directly without purification. The produced butyl butyrate forms a distinct organic phase floating on top and can then be separated easily. In a model system containing 37.1 g/L of butanol and 44.1 g/L of butyric acid, 57% of the butanol is converted to butyl butyrate after 8 h of esterification. With multiple cycles of esterification and product removal, butanol conversion can be further increased to 86%. When spent culture medium containing 7.12 g/L of butanol and 4.81 g/L of butyric acid is used for esterification, 38% of butanol (0.36 mmol) is consumed and 0.33 mmol of butyl butyrate is produced. However, when ABE fermentation and esterification are carried out simultaneously, only 0.042 mmol of butyl butyrate is produced, probably due to the incompatible pH requirements for cell growth (pH 5–7) and esterification (pH 2–3).  相似文献   

8.
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/S) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.  相似文献   

9.
An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of solventogenic clostridia, we revealed that the insufficient biosynthesis of biotin, a pivotal coenzyme for many important biological processes, is a major limiting bottleneck in this anaerobe’s performance. To address this problem, we strengthened the biotin synthesis of C. acetobutylicum by overexpressing four relevant genes involved in biotin transport and biosynthesis. This strategy led to faster growth and improved the titer and productivity of acetone, butanol and ethanol (ABE solvents) of C. acetobutylicum in both biotin-containing and biotin-free media. Expressionally modulating these four genes by modifying the ribosome binding site further promoted cellular performance, achieving ABE solvent titer and productivity as high as 21.9 g/L and 0.30 g/L/h, respectively, in biotin-free medium; these values exceeded those of the wild-type strain by over 30%. More importantly, biotin synthesis reinforcement also conferred improved ability of C. acetobutylicum to use hexose and pentose sugars, further demonstrating the potential of this metabolic-engineering strategy in solventogenic clostridia.  相似文献   

10.
《Process Biochemistry》2014,49(1):10-18
In this study, a new cell immobilization technique is presented. Cells of Clostridium acetobutylicum DSM 792 form a macroporous aggregate through cryogelation with concomitant crosslinking together with activated polyethyleneimine (PEI) and poly(vinyl alcohol) (PVA). The cell based cryogel presents a highly porous, elastic structure with walls consisting of densely packed crosslinked cells. The immobilization process maintained the viability of cells as new bacterial cells were observed when gel-plugs were incubated in liquid medium, glucose was consumed and solvent production was observed. Solvent production was improved 2.7-fold in immobilized cells in comparison to free cells. It was possible to reuse the gel-plugs 3–5 times in partial or completely fresh medium, reaching a maximum butanol concentration in the broth of 18.2 g/l and yield of 0.41 (g/g) in one of the cycles. The use of cells based cryogels can be a good alternative for improvement of acetone-butanol-ethanol (ABE) process as cells are immobilized in a macroporous structure with low limitations for mass transfer with potential for high yield production.  相似文献   

11.
Acetone–butanol–ethanol (ABE) fermentation with a hyper‐butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed‐batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ~610 g/L butanol, ~40 g/L acetone, ~10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The production of 1,3-propanediol, 2,3-butanediol and ethanol was studied, during cultivations of strain Klebsiella oxytoca FMCC-197 on biodiesel-derived glycerol based media. Different kinds of glycerol feedstocks and experimental conditions had an important impact upon the distribution of metabolic products; production of 1,3-propanediol was positively influenced by stable pH conditions and by the absence of N2 gas infusions throughout the fermentation. Thus, during batch bioreactor fermentations conducted at increasing glycerol concentrations, 1,3-propanediol at 41.3 g/L and yield ~47% (w/w) was achieved at initial glycerol concentration ~120 g/L. At even higher initial glycerol media (150 and 170 g/L), growth was not ceased, but 1,3-propanediol production declined. During fed-batch fermentation under optimal experimental conditions, 126 g/L of glycerol were converted into 50.1 g/L of 1,3-propanediol. In this experiment, also 25.2 g/L of ethanol (conversion yield ~20%, w/w) were formed. A batch-bioreactor culture was performed under non-sterilized conditions and the 1,3-propanediol production was almost equivalent to the sterilized process. Concerning 2,3-butanediol formation, the most detrimental parameter was the absence of N2 sparging and as a result, no 2,3-butanediol was produced. The presence of glucose as co-substrate seriously enhanced 2,3-butanediol production; when commercial glucose was employed as sole substrate, 32.1 g/L of 2,3-butanediol were formed.  相似文献   

13.
Effects of initial medium pH and gas flow rate on Clostridium ljungdahlii and Clostridium autoethanogenum in liquid batch, continuous gas fermentations were investigated. Synthesis gas components were supplied at varying flow rates (5, 7.5 and 10 mL/min) for C. ljungdahlii (pH 6.8 and 5.5) and C. autoethanogenum (pH 6.0). Growth on synthesis gas was slower than growth on sugars. For C. ljungdahlii, higher cell densities were achieved at pH 6.8 (579 mg/L) compared to pH 5.5 (378 mg/L). The ethanol concentration at pH 6.8 was also 110% greater than that at pH 5.5. The interaction of flow rate and pH was statistically significant with the greatest acetate production in the 10 mL/min, pH 6.8 treatment. The ethanol to acetate ratios were smaller at lower pH levels and higher flow rates. In C. autoethanogenum fermentations, higher flow rates resulted in greater end product formation with no significant effect on product ratios.  相似文献   

14.
An efficient conversion of glucose and xylose is a requisite for a profitable process of bioethanol production from lignocellulose. Considering the approaches available for this conversion, co-culture is a simple process, employing two different organisms for the fermentation of the two sugars. An innovative fermentation scheme was designed, co-culturing immobilized Zymomonas mobilis and free cells of Pichia stipitis in a modified fermentor for the glucose and xylose fermentation, respectively. A sugar mixture of 30 g/l glucose and 20 g/l of xylose was completely converted to ethanol within 19 h. This gave a volumetric ethanol productivity of 1.277 g/l/h and an ethanol yield of 0.49–0.50 g/g, which is more than 96% of the theoretical value. Extension of this fermentation scheme to sugarcane bagasse hydrolysate resulted in a complete sugar utilisation within 26 h; ethanol production peaked at 40 h with a yield of 0.49 g/g. These values are comparable to the best results reported. Cell interaction was observed between Z. mobilis and P. stipitis. Viable cells of Z. mobilis inhibited the cell activity of P. stipitis and the xylose fermentation. Z. mobilis showed evidence of utilising a source other than glucose for growth when co-cultured with P. stipitis.  相似文献   

15.
2016, was the 100 years anniversary from launching of the first industrial acetone-butanol-ethanol (ABE) microbial production process. Despite this long period and also revival of scientific interest in this fermentative process over the last 20 years, solventogenic clostridia, mainly Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharoperbutylacetonicum and Clostridium pasteurianum, still have most of their secrets. One such poorly understood mechanism is butanol tolerance, which seems to be one of the most significant bottlenecks obstructing industrial exploitation of the process because the maximum achievable butanol concentration is only about 21 g/L. This review describes all the known cellular responses elicited by butanol, such as modifications of cell membrane and cell wall, formation of stress proteins, extrusion of butanol by efflux pumps, response of regulatory pathways, and also maps both random and targeted mutations resulting in high butanol production phenotypes. As progress in the field is inseparably associated with emerging methods, enabling a deeper understanding of butanol tolerance and production, progress in these methods, including genome mining, RNA sequencing and constructing of genome scale models are also reviewed. In conclusion, a comparative analysis of both phenomena is presented and a theoretical relationship is described between butanol tolerance/high production and common features including efflux pump formation/activity, stress protein production, membrane modifications and biofilm growth.  相似文献   

16.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

17.
Fermentation of sulfuric acid treated corn fiber hydrolysate (SACFH) inhibited cell growth and butanol production (1.7 ± 0.2 g/L acetone butanol ethanol or ABE) by Clostridium beijerinckii BA101. Treatment of SACFH with XAD-4 resin removed some of the inhibitors resulting in the production of 9.3 ± 0.5 g/L ABE and a yield of 0.39 ± 0.015. Fermentation of enzyme treated corn fiber hydrolysate (ETCFH) did not reveal any cell inhibition and resulted in the production of 8.6 ± 1.0 g/L ABE and used 24.6 g/L total sugars. ABE production from fermentation of 25 g/L glucose and 25 g/L xylose was 9.9 ± 0.4 and 9.6 ± 0.4 g/L, respectively, suggesting that the culture was able to utilize xylose as efficiently as glucose. Production of only 9.3 ± 0.5 g/L ABE (compared with 17.7 g/L ABE from fermentation of 55 g/L glucose-control) from the XAD-4 treated SACFH suggested that some fermentation inhibitors may still be present following treatment. It is suggested that inhibitory components be completely removed from the SACFH prior to fermentation with C. beijerinckii BA101. In our fermentations, an ABE yield ranging from 0.35 to 0.39 was obtained, which is higher than reported by the other investigators.  相似文献   

18.
19.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

20.
Succinic acid (SA) was produced from Actinobacillus succinogenes with high cell density by continuous fermentation using fibrous bed bioreactor (FBB). The effects of feeding glucose concentration, dilution rate, and pH on continuous production of SA were examined to achieve an efficient and economical bioprocess. The optimum feeding glucose concentration, dilution rate, and pH were 80 g/L, 0.05 1/h, and 6.0–6.5, respectively. A SA concentration of 55.3 ± 0.8 g/L, productivity of 2.77 ± 0.04 g/L/h, and yield of 0.8 ± 0.02 g/g were obtained, and the continuous fermentation exhibited long-term stability for as long as 18 days (440 h) with no obvious fluctuations in both SA and biomass levels. The Jerusalimsky equation for the specific rate of SA production presented the inhibition phenomenon of the product, demonstrating that 60 g/L SA might be a critical concentration in this continuous FBB system. The results obtained could be beneficial for future fermentor designs and improvements in SA production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号