首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human reticulocytes are one of the fundamental components needed to study the in vitro invasion processes of the human malaria parasite Plasmodium vivax. Additionally examinations of reticulocytes and their binding proteins are difficult in areas of the world that do not have access to advanced equipment or stem cell lines. These issues are particularly relevant to malaria vaccine candidate studies that are directed against surface proteins that the parasites use to gain entry into erythrocytes. Described here is a simple and inexpensive method to increase the reticulocyte count of cord blood samples. Exposure of cord blood to hypotonic saline (0.2%) for 5 min selectively lyses the non-reticulocytes resulting in an average 3.6-fold increase in reticulocyte count. Our studies show that this enrichment process does not damage the hemoglobin of the remaining erythrocytes which are still capable of supporting Plasmodium falciparum invasion and growth. This economical and rapid method of enrichment could facilitate studies of in vitro laboratory culturing of other malaria parasite species which preferentially invade reticulocytes such as P. vivax.  相似文献   

2.
This study aimed to develop a single-round multiplex PCR method for the identification of Anopheles minimus complex (An. minimus and Anopheles harrisoni) and Anopheles aconitus subgroup (An. aconitus and Anopheles varuna), and for the simultaneous detection of Plasmodium falciparum and Plasmodium vivax in these vectors. Five primers were created for a single-round multiplex PCR assay to identify four anopheline mosquitoes combined with three Plasmodium primers for the detection of P. falciparum and P. vivax in vectors. The four species of anopheline vectors and two Plasmodium species, P. falciparum and P. vivax, could be identified by the combination of eight primers in the single-round multiplex PCR assay. The amplified species-specific products were 380 bp for An. minimus, 180 bp for An. harrisoni, 150 bp for An. aconitus, 310 bp for An. varuna, 276 bp for P. falciparum, and 300 bp for P. vivax. The sensitivities were 0.5 pg/μl (25 sporozoites/μl) for P. falciparum DNA and between 0.5 and 5 pg/μl (25–250 sporozoites/μl) for P. vivax DNA. Furthermore, this developed method could be used to identify field caught An. minimus complex, An. aconitus subgroup from Thailand and Lao PDR. Also, it was successfully used to identify the species An. minimus, An. harrisoni, An. aconitus and An. varuna and to detect and identify P. falciparum and P. vivax in caught anopheline mosquitoes. The sensitivity of this method was high for simultaneous detection of P. falciparum and P. vivax in anopheline mosquitoes.  相似文献   

3.
The predilection of Plasmodium vivax (P. vivax) for reticulocytes is a major obstacle for its establishment in a long-term culture system, as this requires a continuous supply of large quantities of reticulocytes, representing only 1–2% of circulating red blood cells. We here compared the production of reticulocytes using an established in vitro culture system from three different sources of hematopoietic stem/progenitor cells (HSPC), i.e. umbilical cord blood (UCB), bone marrow (BM) and adult peripheral blood (PB). Compared to CD34+-enriched populations of PB and BM, CD34+-enriched populations of UCB produced the highest amount of reticulocytes that could be invaded by P. vivax. In addition, when CD34+-enriched cells were first expanded, a further extensive increase in reticulocytes was seen for UCB, to a lesser degree BM but not PB. As invasion by P. vivax was significantly better in reticulocytes generated in vitro, we also suggest that P. vivax may have a preference for invading immature reticulocytes, which should be confirmed in future studies.  相似文献   

4.
In this study, the diversity of Plasmodium vivax populations circulating in Pakistan and Iran has been investigated by using circumsporozoite protein (csp) and merozoite surface proteins 1 and 3α (msp-1 and msp-3α) genes as genetic markers. Infected P. vivax blood samples were collected from Pakistan (n = 187) and Iran (n = 150) during April to October 2008, and were analyzed using nested-PCR/RFLP and sequencing methods. Genotyping pvmsp-1 (variable block 5) revealed the presence of type 1, type 2 and recombinant type 3 allelic variants, with type 1 predominant, in both study areas. The sequence analysis of 33 P. vivax isolates from Pakistan and 30 from Iran identified 16 distinct alleles each, with one allele (R-8) from Iran which was not reported previously. Genotyping pvcsp gene also showed that VK210 type is predominant in both countries. Moreover, based on the size of amplified fragment of pvmsp-3α, three major types: type A (1800 bp), type B (1500 bp) and type C (1200 bp), were distinguished among the examined isolates that type A was predominant among Pakistani (72.7%) and Iranian (77.3%) parasites. PCR/RFLP products of pvmsp-3α with HhaI and AluI have detected 40 and 39 distinct variants among Pakistani and Iranian examined isolates, respectively. Based on these three studied genes, the rate of combined multiple genotypes were 30% and 24.6% for Pakistani and Iranian P. vivax isolates, respectively. These results indicate an extensive diversity in the P. vivax populations in both studies.  相似文献   

5.
Neospora caninum causes abortion and stillbirth in cattle. Identification of effective drugs against this parasite remains a challenge. Previous studies have suggested that disruption of abscisic acid (ABA)-mediated signaling in apicomplexan parasites such as Toxoplasma gondii offers a new drug target. In this study, the ABA inhibitor, fluridone (FLU), was evaluated for its action against N. caninum. Production of endogenous ABA within N. caninum was confirmed by ultra-performance liquid chromatography–tandem quadruple mass spectrometry. Subsequently, FLU treatment efficacy was assessed using in vitro. Results revealed that FLU inhibited the growth of N. caninum and T. gondii in vitro (IC50 143.1 ± 43.96 μM and 330.6 ± 52.38 μM, respectively). However, FLU did not affect parasite replication at 24 h post-infection, but inhibited egress of N. caninum thereafter. To evaluate the effect of FLU in vivo, N. caninum-infected mice were treated with FLU for 15 days. FLU treatment appeared to ameliorate acute neosporosis induced by lethal parasite challenge. Together, our data shows that ABA might control egress in N. caninum. Therefore, FLU has potential as a candidate drug for the treatment of acute neosporosis.  相似文献   

6.
Background aimsMesenchymal stromal cells (MSC) are the most popular cells used in regenerative medicine and biotechnology. The clonogenic potential of these cells is defined by colony-forming unit-fibroblasts (CFU-F). It is well known that there is an interaction between hematopoietic cells and stromal cells in disease formation pathogenesis. Therefore we hypothesized that there should be a quantitative and qualitative relationship between MSC colonies (CFU-F) and hematopoietic stem cell colonies (colony-forming unit-granulocyte-macrophages; CFU-GM) among patients with and without hematologic diseases.MethodsForty-two patients were included in this study. Patients were divided into three groups: group A, patients with hematologic malignancies (n = 20); group B, patients with bone marrow (BM) failure (n = 11); group C, patients without hematologic diseases (n = 11). BM aspirates were plated in different densities for CFU-F culture. The plating density was the same for CFU-GM culture.ResultsCFU-GM colonies grew in 90% of group A cells and all of group B and C cells (P = 0.0001). CFU-F colonies became visible on the ninth day of plating in group A and on the eight day in groups B and C. There was no statistically significant difference between the groups for the duration of CFU-F colony formation (P = 0.12). There were differences in the morphology of the colonies among the groups.ConclusionsThis is the first study that has compared the clonogenic potential of stromal cells and hematopoietic stem cells in the same subjects with and without hematologic diseases. No correlation was shown between the clonogenic potential of stromal cells and hematopoietic cells.  相似文献   

7.
The course of malaria infection in mammals begins with transmission of Plasmodium sporozoites into the skin by Anopheles mosquitoes, followed by migration of the sporozoites to the liver. As no symptoms present until hepatic merozoites are released and until they infect erythrocytes in the blood vessels, sporozoites and liver-stage (LS) parasites are promising targets for anti-malaria drugs aiming to prevent mosquito-to-mammal transmission. In vitro LS parasite development system is useful in the screening of candidate drugs on LS parasite development and the elucidation of its underlying molecular mechanisms, which remain unclear. Using rodent malaria parasites (Plasmodium berghei) as a model, this study aimed to develop an optimal in vitro LS culture system for the full maturation of the LS parasite into the hepatic merozoite, the next infective stage in parasite development. As the development of this system required measurement of maturation, a novel quantitative index of LS parasite maturation based on the expression pattern of liver-specific protein 2 (LISP2) was first developed. The use of this index for comparing the effect of incubation in different culture media on LS maturation revealed that the d-glucose concentration of the culture medium is the key factor promoting parasite development in hepatocytes and that a d-glucose concentration of 2000 mg/L/day is the threshold concentration at which the maturation of P. berghei into infective hepatic merozoites is achieved. These findings can be utilized to optimize a human malaria LS culture system for drug discovery.  相似文献   

8.
BackgroundA very large biomass of intact asexual-stage malaria parasites accumulates in the spleen of asymptomatic human individuals infected with Plasmodium vivax. The mechanisms underlying this intense tropism are not clear. We hypothesised that immature reticulocytes, in which P. vivax develops, may display high densities in the spleen, thereby providing a niche for parasite survival.Methods and findingsWe examined spleen tissue in 22 mostly untreated individuals naturally exposed to P. vivax and Plasmodium falciparum undergoing splenectomy for any clinical indication in malaria-endemic Papua, Indonesia (2015 to 2017). Infection, parasite and immature reticulocyte density, and splenic distribution were analysed by optical microscopy, flow cytometry, and molecular assays. Nine non-endemic control spleens from individuals undergoing spleno-pancreatectomy in France (2017 to 2020) were also examined for reticulocyte densities. There were no exclusion criteria or sample size considerations in both patient cohorts for this demanding approach.In Indonesia, 95.5% (21/22) of splenectomy patients had asymptomatic splenic Plasmodium infection (7 P. vivax, 13 P. falciparum, and 1 mixed infection). Significant splenic accumulation of immature CD71 intermediate- and high-expressing reticulocytes was seen, with concentrations 11 times greater than in peripheral blood. Accordingly, in France, reticulocyte concentrations in the splenic effluent were higher than in peripheral blood. Greater rigidity of reticulocytes in splenic than in peripheral blood, and their higher densities in splenic cords both suggest a mechanical retention process. Asexual-stage P. vivax-infected erythrocytes of all developmental stages accumulated in the spleen, with non-phagocytosed parasite densities 3,590 times (IQR: 2,600 to 4,130) higher than in circulating blood, and median total splenic parasite loads 81 (IQR: 14 to 205) times greater, accounting for 98.7% (IQR: 95.1% to 98.9%) of the estimated total-body P. vivax biomass. More reticulocytes were in contact with sinus lumen endothelial cells in P. vivax- than in P. falciparum-infected spleens. Histological analyses revealed 96% of P. vivax rings/trophozoites and 46% of schizonts colocalised with 92% of immature reticulocytes in the cords and sinus lumens of the red pulp. Larger splenic cohort studies and similar investigations in untreated symptomatic malaria are warranted.ConclusionsImmature CD71+ reticulocytes and splenic P. vivax-infected erythrocytes of all asexual stages accumulate in the same splenic compartments, suggesting the existence of a cryptic endosplenic lifecycle in chronic P. vivax infection. Findings provide insight into P. vivax-specific adaptions that have evolved to maximise survival and replication in the spleen.

Dr. Anstey and co-authors found that P. vivax-infected immature reticulocytes and erythrocytes accumulate in the same splenic compartments, suggesting existence of a cryptic endosplenic lifecycle in chronic P. vivax infection that maximizes survival and replication in the spleen.  相似文献   

9.
The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34+hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.  相似文献   

10.
During intra-erythrocytic maturation, malaria parasites catabolize up to 80% of cellular haemoglobin. Haem is liberated inside the parasite and converted to haemozoin, preventing haem iron from participating in cell-damaging reactions. Several experimental techniques exploit the relatively large paramagnetic susceptibility of malaria-infected cells as a means of sorting cells or investigating haemoglobin degradation, but the source of the dramatic increase in cellular magnetic susceptibility during parasite growth has not been unequivocally determined. Plasmodium falciparum cultures were enriched using high-gradient magnetic fractionation columns and the magnetic susceptibility of cell contents was directly measured. The forms of haem iron in the erythrocytes were quantified spectroscopically. In the 3D7 laboratory strain, the parasites converted approximately 60% of host cell haemoglobin to haemozoin and this product was the primary source of the increase in cell magnetic susceptibility. Haemozoin iron was found to have a magnetic susceptibility of (11.0 ± 0.9) × 10? 3 mL mol? 1. The calculated volumetric magnetic susceptibility (SI units) of the magnetically enriched cells was (1.88 ± 0.60) × 10? 6 relative to water while that of uninfected cells was not significantly different from water. Magnetic enrichment of parasitised cells can therefore be considered dependent primarily on the magnetic susceptibility of the parasitised cells.  相似文献   

11.
《Cytokine》2014,65(1):42-47
ObjectiveTo investigate the influence of IL6, IL12B and VDR single nucleotide polymorphisms (SNPs) in uncomplicated Plasmodium vivax infection symptoms intensity, parasitemia and gametocytemia levels in a Brazilian Amazonian population.MethodsA total of 167 malaria patients infected by P. vivax have parasitemia and gametocytemia levels estimated before treatment. Fourteen clinical symptoms were evaluated and included in a principal component analysis to derive a clinical symptom index. Patients were genotyped for IL6-174C > G, IL12B 735T > C, 458A > G, 159A > C, and VDR FokI, TaqI, BsmI SNPs by Taqman 5’ nuclease assays. A General Linear Model analysis of covariance with age, gender, exposure period and infection history and genetic ancestry was performed to investigate the association of genotypes with parasitemia and gametocytemia levels and with a clinical symptom index.ResultsHigher parasitemia levels were observed in IL6-174C carriers (p = 0.02) whereas IL12B CGT haplotype carriers presented lower parasitemia levels (p = 0.008). VDR TaqIC/BsmIA haplotype carriers showed higher gametocyte levels than non-carriers (p = 0.013). Based on the clinical index values the IL6-174C > G polymorphism was associated with malaria severity. The IL6-174C carriers presented a more severe clinical index when compared to GG homozygotes (p = 0.001).ConclusionThe present study suggests that IL6, IL12 and VDR influence severity, parasitemia and gametocytemia clearance in P. vivax infections, and highlights their potential role in malaria immune response in an Amazonian population.  相似文献   

12.
Successful antral formation in vitro from bovine preantral follicles (145–170 μm) has been described previously, but antrum formation from the primary follicle (50–70 μm) has not yet been achieved in vitro. The aim of the study was to establish an optimal culture system supporting the growth and maturation of bovine primary follicles (50–70 μm) in vitro. Bovine primary follicles were cultured in a three-dimensional culture system for 13 or 21 days in alpha-minimum essential medium. Various treatments including follicle stimulating hormone (FSH), luteinizing hormone (LH), 17β-estradiol (E2), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were tested. The follicular diameter and antrum formation rate were recorded, and follicular maturation markers (P450 aromatase, CYP19A1; anti-Mullerian hormone, AMH; growth differentiation factor-9, GDF9; bone morphogenetic protein-15, BMP15; and type III transforming growth factor β receptor, TGFβR3) were analyzed by real-time RT-PCR. After 21 days of culture under each treatment condition, the follicular diameter was significantly enlarged in the presence of FSH + LH + E2 + bFGF or FSH + LH + E2 + bFGF + EGF (p < 0.05). An addition of 50 ng/ml bFGF or bFGF + 25 ng/ml EGF initiated antrum formation by day 19 and day 17 of culture, and the antral cavity formation rate was 16.7% and 33.3% by 21 days of culture, respectively. The expression of follicular maturation markers (CYP19A1, AMH, GDF9, BMP15 and TGFβR3) was significantly altered. We conclude that addition of 50 ng/ml bFGF + 25 ng/ml EGF to media containing FSH + LH + E2 turned out to be the most effective optimized culture conditions to support the growth and maturation of bovine primary follicles in vitro.  相似文献   

13.
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5′-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites.  相似文献   

14.
We describe here the identification of non-peptidic vinylsulfones that inhibit parasite cysteine proteases in vitro and inhibit the growth of Trypanosoma brucei brucei parasites in culture. A high resolution (1.75 Å) co-crystal structure of 8a bound to cruzain reveals how the non-peptidic P2/P3 moiety in such analogs bind the S2 and S3 subsites of the protease, effectively recapitulating important binding interactions present in more traditional peptide-based protease inhibitors and natural substrates.  相似文献   

15.
Aqueous extract of the green fruits of the Indian plant Momordica charantia and purified Momordicatin structurally established as 4-(o-carboethoxyphenyl) butanol were evaluated in vitro and in vivo against kala-azar caused by Leishmania donovani. 50% inhibitory concentration (IC50) against Leishmania promastigotes in vitro for the crude extract and momordicatin were 0.6 mg/L and 0.02 mg/L, respectively. When administered in the hamster model of visceral leishmaniasis, 100% parasite clearance was achieved at a dose of 300 mg/kg body weight of crude extract and 10 mg/kg body weight of Momordicatin. Fe containing parasite superoxide dismutase (SOD) was totally inhibited when treated with 0.72 mg/L crude extract and 0.20 mg/L Momordicatin, respectively, whereas Cu–Zn containing SOD present in host remained unaffected. Results reveal that the mode of action of these newly found antileishmanial agents is mediated through inhibiting parasite SOD which is one of the key enzymes of the oxidative burst. It may be proposed from the present study that both crude extract of Momordica charantia and Momordicatin obtained from the fruits of the said plant may be considered as potential candidates towards developing new chemotherapeutics against leishmaniasis.  相似文献   

16.
AimsThe phytoestrogen Ferutinin plays an important role in prevention of osteoporosis caused by ovariectomy-induced estrogen deficiency in rats, but there is no evidence of its effect on osteoblastic differentiation in vitro. In this study we investigated the effect of Ferutinin on proliferation and osteoblastic differentiation of two different human stem cells populations, one derived from the amniotic fluid (AFSCs) and the other from the dental pulp (DPSCs).Main methodsAFSCs and DPSCs were cultured in a differentiation medium for 14 or 21 days with or without the addition of Ferutinin at a concentration ranging from 10? 11 to 10? 4 M. 17β-Estradiol was used as a positive drug at 10? 8 M. Cell proliferation and expression of specific osteoblast phenotype markers were analyzed.Key findingsMTT assay revealed that Ferutinin, at concentrations of 10? 8 and 10? 9 M, enhanced proliferation of both AFSCs and DPSCs after 72 h of exposure. Moreover, in both stem cell populations, Ferutinin treatment induced greater expression of the osteoblast phenotype markers osteocalcin (OCN), osteopontin (OPN), collagen I, RUNX-2 and osterix (OSX), increased calcium deposition and osteocalcin secretion in the culture medium compared to controls. These effects were more pronounced after 14 days of culture in both populations.SignificanceThe enhancing capabilities on proliferation and osteoblastic differentiation displayed by the phytoestrogen Ferutinin make this compound an interesting candidate to promote bone formation in vivo.  相似文献   

17.
Leptadenia reticulata (Retz.) Wight. & Arn. is an important medicinal plant, belongs to the family Asclepiadaceae. This plant is known for its medicinal uses since 4500 BC. Presently this is an endangered species (Arya et al., 2003). Six shoots (2–4 cm long) per node differentiated on MS medium + 5.0 mg/l of BAP + additives. Incorporation of additives in the culture medium promoted growth of cultures. The shoots differentiated per explant were repeatedly transferred on to fresh MS + 1.0 mg/l of BAP + 0.1 mg/l of NAA and additives. The regenerated shoots were subcultured for further multiplication on MS + 1.0 mg/l BAP + 0.5 mg/l Kin + 2-iP (0.5 mg/l) and 0.1 mg/l of NAA + additives regularly after an interval of 3 weeks. Addition of ammonium sulphate in the medium resulted in increase in shoot number and promoted elongation also growth of cultures was sustained even if subculturing was delayed (26 ± 2 days). Success was also achieved in defining protocol for in vitro regeneration of shoots from petiole derived callus. Shoots regenerated in vitro by both processes were rooted in vitro on 1/4 strength of MS medium + 3.0 mg/l of IBA after 15–20 days. Cent percent of the shoots rooted ex vitro, if the in vitro regenerated shoots were treated with 200 mg/l of IBA. The in vitroex vitro rooted plantlets were hardened under different regimes of temperature and humidity in a greenhouse. The hardened plantlets were transferred to soil in polybags. More than 95% plants survived in field conditions. Total dry biomass harvested per year was 2800 kg/acre.  相似文献   

18.
The present study was carried out as part of an ongoing general survey for myxosporean parasites infecting tilapias in the River Nile, Egypt. In the present study, 77 Nile tilapia (Oreochromis niloticus) were collected from boat landing sites at Beni-Suef governorate, Egypt and examined for the myxosporean infection. The infection was encountered as a huge number of free spores in the kidney and the spleen. The infection showed a prevalence of 51.9% (40/77) for Myxobolus brachysporus while it was 25.9% (20/77) for Myxobolus israelensis. Mature spores of M. brachysporus were ellipsoidal and measured 8.6 × 13.2 μm. The polar capsules were subcircular with 5–6 filament turns and measured 4.7 × 3.6 μm. Spores of M. israelensis were ellipsoidal in the frontal view and fusiform in the lateral view. Spore measurements were 13.4 μm long and 8.7 μm wide. The polar capsules were elongated with 6–7 filament coils and measured 8.6 × 3.1 μm. The findings presented here proved that tilapia fishes in the Nile River are still suffering from infections with Myxobolus species. Therefore, further studies should be carried out to survey the Myxobolus infection among tilapias under culture conditions to clarify the pathological impacts of this parasite in tilapias aquaculture.  相似文献   

19.
20.
Effects of plant growth regulators (PGRs) and organic elicitors (OEs) on Coleonema pulchellum in vitro micropropagation, secondary product production and pharmacological activities were evaluated. In vitro, ex vitro and parental plants of C. pulchellum were investigated for their potential to produce phenolic and pharmacological compounds. Different morphogenic characteristics of shoots were obtained with PGRs- and OEs-containing media. A higher number of normal shoots were achieved with a low concentration of thidiazuron (TDZ: 4.5 μM). Lesser numbers were found with combinations of TDZ (13.6 μM) + indole-3-acetic acid (IAA: 2.9 μM); haemoglobin (HB: 300 mg l 1) or glutamine (GM: 40 μM) + benzyladenine (BA: 8.8 μM). Shoots were rooted in vitro and successfully acclimatized. Plant growth regulators and OEs had a significant effect on the synthesis and accumulation of phenolic compounds and flavonoids. In particular, casein hydrolysate (CH) as well as a combination of GM and BA induced high levels of total phenolics and flavonoids during in vitro culture. Cytokinins and OEs had a significant effect on DPPH radical scavenging and antibacterial activities of C. pulchellum extracts. Acclimatized C. pulchellum plants can be used as substitute alternative to natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号