首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
To assess the potential zoonotic transmission of giardiasis from dogs in China, a total of 205 fecal specimens from dogs were screened for Giardia duodenalis using PCR and sequence analysis of the triosephosphate isomerase gene. The prevalence of G. duodenalis in dogs was 13.2% (27/205). The potentially zoonotic assemblage A and the dog-specific assemblage C was identified in 25 (12.2%) and two (1.0%) dogs, respectively. All assemblage A isolates belonged to sub-assemblage AI, genotype AI-1. Likewise, one subtype was found in assemblage C. The high occurrence of potentially zoonotic G. duodenalis subtype AI-1 in dogs that are in close contact with humans is of public health concern.  相似文献   

2.

Background

Giardia duodenalis is a widespread intestinal protozoan of both humans and mammals. To date, few epidemiological studies have assessed the potential and importance of zoonotic transmission; and the human giardiasis burden attributable to G. duodenalis of animal origin is unclear. No information about occurrence and genotyping data of sheep and goat giardiasis is available in China. The aim of the present study was to determine prevalence and distribution of G. duodenalis in sheep and goats in Heilongjiang Province, China, and to characterize G. duodenalis isolates and assess the possibility of zoonotic transmission.

Methodology/Principal Findings

A total of 678 fecal specimens were collected from sheep and goats on six farms ranging in age from one month to four years in Heilongjiang Province, China. The average prevalence of G. duodenalis infection was 5.0% (34/678) by microscopy after Lugol''s iodine staining, with 5.6% (30/539) for the sheep versus 2.9% (4/139) for the goats. Molecular analysis was conducted on 34 G. duodenalis isolates based on the triosephosphate isomerase (tpi) gene. 29 tpi gene sequences were successfully obtained and identified as assemblages A (n = 4), B (n = 2) and E (n = 23). High heterogeneity was observed within assemblage E at the tpi locus, with five novel subtypes found out of seven subtypes. Two subtypes of assemblage A were detected, including subtype AI (n = 3) and a novel subtype (designated as subtype AIV) (n = 1). Two assemblage B isolates were identical to each other in the tpi gene sequences.

Conclusions/Significance

This is the first report of G. duodenalis infections in sheep and goats in China. The present data revealed the unique endemicity on prevalence, distribution and genetic characterization of G. duodenalis in sheep and goats in Heilongjiang Province. The findings of assemblages A and B in sheep and goats implied the potential of zoonotic transmission.  相似文献   

3.
4.
Giardia duodenalis represents one of the most widespread human enteric parasites: about 200 million people in Asia, Africa and Latin America are infected. Giardia exerts a deep impact on public health because of high prevalence and possible effects on growth and cognitive functions in infected children. The major aim of this study was to detect and genetically characterize G. duodenalis in both human and animal fecal samples collected in Pemba Island, in the archipelago of Zanzibar (Tanzania), in order to deepen the knowledge of genotypes of Giardia in this area.Between October 2009 and October 2010, we collected 45 human fecal samples from children from 2 primary schools and 60 animal fecal samples: 19 from zebus (Bos primigenius indicus) and 41 from goats (Capra hircus). Detection and genetic identification were performed by multilocus analysis of ssu-rDNA and gdh genes. In humans we found a higher prevalence of assemblage B (sub-assemblage BIV), in goats of assemblage E and in zebus of assemblage A. Our study represents an important contribution to the epidemiological knowledge of G. duodenalis in this area of Tanzania.  相似文献   

5.
Giardia duodenalis is an important zoonotic pathogen, causes diarrhea in humans and animals worldwide. To date, few data are available on the prevalence of G. duodenalis in rabbits in China. In total, 955 fecal samples were collected from rabbits during 2008–2011 in Henan Province, Central China. The overall prevalence of G. duodenalis was 8.4% (80/955) on microscopic analysis, with the highest infection rate (11.3%) in rabbits aged 91–200 d. All G. duodenalis‐positive isolates were characterized at the small subunit ribosomal RNA, β‐giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase genes. Two assemblages and a mixed assemblage were detected in the rabbits: assemblage B (n = 26), assemblage E (n = 2), and a mixed assemblage of B and E (n = 4). Assemblage B isolates showed variability at the nucleotide sequences belonging to the so‐called subtype BIV, based on analysis of multiple genes. This is the first report of G. duodenalis assemblage E in rabbits, and one novel subtype of assemblage E was identified through sequence analysis of gdh and bg genes, respectively. Our data suggest that rabbits may be reservoirs of G. duodenalis cysts potentially infectious to humans.  相似文献   

6.
Giardia duodenalis is a widespread parasite of mammalian species, including humans. Due to its invariant morphology, investigations of aspects such as host specificity and transmission patterns require the direct genetic characterisation of parasites from faecal samples. We performed a sequence analysis of four genes (ssrRNA, β-giardin, glutamate dehydrogenase and triose phosphate isomerase) of 61 human isolates and 29 animal isolates. The results showed that multilocus genotypes (MLGs) can be readily defined for G. duodenalis isolates of assemblage A but not for assemblage B. Indeed, for assemblage A isolates, there was no evidence of intra-isolate sequence heterogeneity, and congruent genotyping results were obtained at the four genetic loci investigated. Sequence comparison and phylogenetic analysis showed that human-derived and animal-derived MLGs are different, and further indicated the presence of a new sub-assemblage (referred to as “AIII”), which was found exclusively in wild hoofed animals. On the other hand, there were variable levels of intra-isolate sequence heterogeneity (i.e., the presence of two overlapping nucleotide peaks at specific positions in the chromatograms, or “heterogeneous templates”) in assemblage B isolates from humans and animals, and this prevented the unambiguous identification of MLGs. Furthermore, in five human isolates and one non-human primate isolate, the assignment to assemblage B was problematic, given that one of the four markers supported an assignment to assemblage A. These findings raise concerns about the interpretation of genotyping data based on single markers, and indicate the need to understand the mechanisms that are responsible for the differences between G. duodenalis assemblages A and B.  相似文献   

7.
Parasites of the genus Eimeria are involved in the neonatal diarrhea complex of alpaca (Vicugna pacos) crias, and infection by Eimeria is commonly known as coccidiosis. There are limited reports of these protozoa in clinically asymptomatic crias. In this study, fecal samples from 78 clinically asymptomatic alpaca crias were analyzed to evaluate the prevalence, parasitological load, and diversity of Eimeria species. This study was conducted in the Quenamari community located in the Peruvian Andes (Marangani, Cuzco) at 4500 m above sea level. All fecal samples were examined for parasites using the quantitative McMaster and modified Stoll techniques. Microscopic examination showed the presence of Eimeria oocysts in 68 out of the 78 samples (87.18%). Among the 78 samples we found E. lamae in 67 (85.90%), E. punoensis in 49 (62.82%), E. alpacae in 42 (53.85%), E. macusaniensis in 32 (41.03%), and E. ivitaensis in four (5.13%). Regarding parasitized crias, overall there was a mean parasitological load of 43,920 oocysts per gram of feces (OPG). Eimeria lamae had the highest parasitological load (mean 206,600 OPG). These findings could be due to environmental contamination with oocysts of different Eimeria species. Additional research is needed to determine if this burden of coccidiosis could produce subclinical impacts to the health of alpaca crias.  相似文献   

8.
The objective of this study was to genetically characterize isolates of Giardia duodenalis and to determine if zoonotic potential of G. duodenalis could be found in stray cats from urban and suburban environments in Guangzhou, China. Among 102 fresh fecal samples of stray cats, 30 samples were collected in Baiyun district (urban) and 72 in Conghua district (suburban). G. duodenalis specimens were examined using light microscopy, then the positive specimens were subjected to PCR amplification and subsequent sequencing at 4 loci such as glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), β-giardin (bg), and small subunit ribosomal RNA (18S rRNA) genes. The phylogenetic trees were constructed using obtained sequences by MEGA5.2 software. Results show that 9.8% (10/102) feline fecal samples were found to be positive by microscopy, 10% (3/30) in Baiyun district and 9.7% (7/72) in Conghua district. Among the 10 positive samples, 9 were single infection (8 isolates, assemblage A; 1 isolate, assemblage F) and 1 sample was mixed infection with assemblages A and C. Based on tpi, gdh, and bg genes, all sequences of assemblage A showed complete homology with AI except for 1 isolate (CHC83). These findings not only confirmed the occurrence of G. duodenalis in stray cats, but also showed that zoonotic assemblage A was found for the first time in stray cats living in urban and suburban environments in China.  相似文献   

9.
Giardia duodenalis is one of the most prevalent enteroparasites in children. This parasite produces several clinical manifestations. The aim of this study was to determine the prevalence of genotypes of G. duodenalis causing infection in a region of southeastern Mexico. G. duodenalis cysts were isolated (33/429) from stool samples of children and molecular genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, targeting the triosephosphate isomerase ( tpi ) and glutamate dehydrogenase ( gdh ) genes. The tpi gene was amplified in all of the cyst samples, either for assemblage A (27 samples) or assemblage B (6 samples). RFLP analysis classified the 27 tpi -A amplicons in assemblage A, subgenotype I. Samples classified as assemblage B were further analysed using PCR-RFLP of the gdh gene and identified as assemblage B, subgenotype III. To our knowledge, this is the first report of assemblage B of G. duodenalis in human clinical samples from Mexico.  相似文献   

10.
Giardia duodenalis is a common intestinal protozoa, which can cause the occurrence of diarrhea, weight loss, and even death in animals or human, this threatens the husbandry industry and public health. It can infect virtually humans and all domestic animals including sheep. Tan sheep is one of the most important sheep breeds, which is short-tailed indigenous sheep breed used for production of high quality meat and pelts in China. However, there are no report regarding the occurrence and multilocus genotyping of G. duodenalis in Tan sheep in northwestern China. Thus, the objective of the present study was to investigate the prevalence and multilocus genotypes of G. duodenalis in Tan sheep. 1014 fecal samples were collected from Tan sheep from Ningxia Hui Autonomous Region, and three loci (β-giardin (bg), glutamate dehydrogenase (gdh) and triosephosphate isomerase (tpi) genes) were amplified by nested PCR. The prevalence of G. duodenalis in Tan sheep was 14.5% (147/1014), two assemblages (assemblage A, n = 43; and E, n = 90) were detected, including one novel assemblage A at bg locus, one novel assemblage A at tpi locus, and 10 and 11 novel subtypes of assemblage E were detected at the bg and gdh loci, respectively. One MLGs was formed based on sequence variation among the three loci. Moreover, 9 Tan sheep were infected with two assemblages (A and E) based on the three loci. These findings expand the host range of G. duodenalis and revealed genetic diversity of G. duodenalis assemblages in Tan sheep.  相似文献   

11.

Background

Despite their wide occurrence, cryptosporidiosis and giardiasis are considered neglected diseases by the World Health Organization. The epidemiology of these diseases and microsporidiosis in humans in developing countries is poorly understood. The high concentration of pathogens in raw sewage makes the characterization of the transmission of these pathogens simple through the genotype and subtype analysis of a small number of samples.

Methodology/Principal Findings

The distribution of genotypes and subtypes of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in 386 samples of combined sewer systems from Shanghai, Nanjing and Wuhan and the sewer system in Qingdao in China was determined using PCR-sequencing tools. Eimeria spp. were also genotyped to assess the contribution of domestic animals to Cryptosporidium spp., G. duodenalis, and E. bieneusi in wastewater. The high occurrence of Cryptosporidium spp. (56.2%), G. duodenalis (82.6%), E. bieneusi (87.6%), and Eimeria/Cyclospora (80.3%) made the source attribution possible. As expected, several human-pathogenic species/genotypes, including Cryptosporidium hominis, Cryptosporidium meleagridis, G. duodenalis sub-assemblage A-II, and E. bieneusi genotype D, were the dominant parasites in wastewater. In addition to humans, the common presence of Cryptosporidium spp. and Eimeria spp. from rodents indicated that rodents might have contributed to the occurrence of E. bieneusi genotype D in samples. Likewise, the finding of Eimeria spp. and Cryptosporidium baileyi from birds indicated that C. meleagridis might be of both human and bird origins.

Conclusions/Significance

The distribution of Cryptosporidium species, G. duodenalis genotypes and subtypes, and E. bieneusi genotypes in urban wastewater indicates that anthroponotic transmission appeared to be important in epidemiology of cryptosporidiosis, giardiasis, and microsporidiosis in the study areas. The finding of different distributions of subtypes between Shanghai and Wuhan was indicative of possible differences in the source of C. hominis among different areas in China.  相似文献   

12.
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is an important zoonotic parasite infecting livestock (including pigs) through ingesting cysts in contaminated food or water. This parasite has been classified into eight different genetic assemblages, A to H. Here, we examined the individual-level prevalence of G. duodenalis in domestic pig farms and confirmed host specificity by genotype comparisons. Samples were collected from southern and central Korea, between May 2017 and January 2019. DNA directly extracted from 745 pig fecal specimens were tested by PCR for G. duodenalis small subunit ribosomal RNA (ssu rRNA), glutamate dehydrogenase (gdh), and β-giardin gene sequences. Based on ssu rRNA PCR, 110 (14.8%) were positive for G. duodenalis. Infection risk was the highest in the fattener group (31/139, 22.3%) and during the autumn season (52/245, 21.2%: p < .001). No statistically significant differences in risk for infection were observed between fecal types (normal versus diarrheal). Fifty ssu rRNA samples, three gdh samples, and five β-giardin samples were successfully sequenced and genotyped. Ssu rRNA assemblage sequence analysis identified E (40.0%, 20/50), D (34.0%, 17/50), C (24.0%, 12/50), and A (2.0%, 1/50). The gdh locus identified three samples as assemblage E, and the β-giardin locus identified four samples as assemblage E and one as assemblage C. Assemblage A sequences obtained (ssu rRNA; MK430919) had 100% identity with Giardia sequences isolated from a Korean individual (AJ293301), indicating the potential of zoonotic transmission. Continuous management and monitoring for prevention of transmission and protection of animal and human health are essential.  相似文献   

13.

Background

The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates.

Results

Several biological differences between the new and earlier characterized assemblage A isolates were identified, including a difference in growth medium preference. The two AII isolates were of different sub-assemblage types (AII-1 [AS175] and AII-2 [AS98]) and showed size differences in the smallest chromosomes. The amount of genetic diversity was characterized in relation to the genome of the Giardia reference isolate WB, an assemblage AI isolate. Our analyses indicate that the divergence between AI and AII is approximately 1 %, represented by ~100,000 single nucleotide polymorphisms (SNP) distributed over the chromosomes with enrichment in variable genomic regions containing surface antigens. The level of allelic sequence heterozygosity (ASH) in the two AII isolates was found to be 0.25–0.35 %, which is 25–30 fold higher than in the WB isolate and 10 fold higher than the assemblage AII isolate DH (0.037 %). 35 protein-encoding genes, not found in the WB genome, were identified in the two AII genomes. The large gene families of variant-specific surface proteins (VSPs) and high cysteine membrane proteins (HCMPs) showed isolate-specific divergences of the gene repertoires. Certain genes, often in small gene families with 2 to 8 members, localize to the variable regions of the genomes and show high sequence diversity between the assemblage A isolates. One of the families, Bactericidal/Permeability Increasing-like protein (BPIL), with eight members was characterized further and the proteins were shown to localize to the ER in trophozoites.

Conclusions

Giardia genomes are modular with highly conserved core regions mixed up by variable regions containing high levels of ASH, SNPs and variable surface antigens. There are significant genomic variations in assemblage A isolates, in terms of chromosome size, gene content, surface protein repertoire and gene polymorphisms and these differences mainly localize to the variable regions of the genomes. The large genetic differences within one assemblage of G. intestinalis strengthen the argument that the assemblages represent different Giardia species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1893-6) contains supplementary material, which is available to authorized users.  相似文献   

14.
Giardia duodenalis is an important protozoan parasite that is known to be zoonotic. To assess the potential zoonotic transmission of giardiasis from dogs and to identify genetic diversity of G. duodenalis in dog populations, we examined the infection rate and genotypes of G. duodenalis in both pet dogs (from pet dog farms, pet shops, pet hospitals, pet markets) and stray dogs of different ages in Henan Province, China. A total of 940 fresh fecal specimens were collected from 2007 to 2013 in Henan Province. The overall infection rate of G. duodenalis was 14.3% (134/940) as determined by microscopy, with the highest infection rate (17.3%) observed in dogs from shelters. Young dogs were more likely to be infected with G. duodenalis than adult dogs, and G. duodenalis cysts were found more frequently in diarrheic dogs. All G. duodenalis-positive isolates were characterized at the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) loci, and 37, 51, and 48 sequences were obtained, respectively. The dog-specific assemblages C and D were identified using multi-locus sequence analysis. Six novel sequences of the tpi locus, one novel sequence of the gdh locus and two novel sequences of the bg locus were detected among the G. duodenalis assemblage C isolates, while two novel sequences of the gdh locus were found among the G. duodenalis assemblage D isolates. Our data indicate that G. duodenalis is a common parasite and cause of diarrheal disease in dogs in Henan Province. However, there was no evidence for zoonotic G. duodenalis assemblages in the study population.  相似文献   

15.

Background

The flagellate protozoan Giardia duodenalis is an enteric parasite causing human giardiasis, a major gastrointestinal disease of global distribution affecting both developing and industrialised countries. In Spain, sporadic cases of giardiasis have been regularly identified, particularly in pediatric and immigrant populations. However, there is limited information on the genetic variability of circulating G. duodenalis isolates in the country.

Methods

In this longitudinal molecular epidemiological study we report the diversity and frequency of the G. duodenalis assemblages and sub-assemblages identified in 199 stool samples collected from 184 individual with symptoms compatible with giardiasis presenting to two major public hospitals in Madrid for the period December 2013–January 2015. G. duodenalis cysts were initially detected by conventional microscopy and/or immunochomatography on stool samples. Confirmation of the infection was performed by direct immunofluorescence and real-time PCR methods. G. duodenalis assemblages and sub-assemblages were determined by multi-locus genotyping of the glutamate dehydrogenase (GDH) and β-giardin (BG) genes of the parasite. Sociodemographic and clinical features of patients infected with G. duodenalis were also analysed.

Principal findings

Of 188 confirmed positive samples from 178 giardiasis cases a total of 124 G. duodenalis isolates were successfully typed at the GDH and/or the BG loci, revealing the presence of sub-assemblages BIV (62.1%), AII (15.3%), BIII (4.0%), AI (0.8%), and AIII (0.8%). Additionally, 6.5% of the isolates were only characterised at the assemblage level, being all of them assigned to assemblage B. Discordant genotype results AII/AIII or BIII/BIV were also observed in 10.5% of DNA isolates. A large number of multi-locus genotypes were identified in G. duodenalis assemblage B, but not assemblage A, isolates at both the GDH and BG loci, confirming the high degree of genetic variability observed in other molecular surveys. BIV was the most prevalent genetic variant of G. duodenalis found in individuals with symptomatic giardiasis in the population under study.

Conclusions

Human giardiasis is an ongoing public health problem in Spain affecting primarily young children under four years of age but also individuals of all age groups. Our typing and sub-typing results demonstrate that assemblage B is the most prevalent G. duodenalis assemblage circulating in patients with clinical giardiasis in Central Spain. Our analyses also revealed a large genetic variability in assemblage B (but not assemblage A) isolates of the parasite, corroborating the information obtained in similar studies in other geographical regions. We believe that molecular data presented here provide epidemiological evidence at the population level in support of the existence of genetic exchange within assemblages of G. duodenalis.  相似文献   

16.
Little is known of the occurrence and age patterns of species/genotypes and subtypes of Cryptosporidium spp. and Giardia duodenalis in calves in Egypt. In this study, 248 fecal specimens were collected from dairy calves aged 1?day to 6?months on eight farms in three provinces during March 2015 to April 2016. Cryptosporidium spp. were detected and genotyped by using PCR-RFLP analysis of the small subunit rRNA (SSU rRNA) gene, while G. duodenalis was detected and genotyped by using PCR and sequence analyses of the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh) and β-giardin (bg) genes. The overall infection rates of Cryptosporidium spp. and G. duodenalis were 9.7 and 13.3%, respectively. The highest Cryptosporidium infection rate (26.7%) was in calves of age?≤?1?month while the highest G. duodenalis infection rate (44.4%) was in calves of 2?months. Three Cryptosporidium spp. were identified, including C. parvum (n?=?16), C. bovis (n?=?5) and C. ryanae (n?=?3), with the former being almost exclusively found in calves of ≤3?months of age and the latter two being only found in calves of over 3?months. Subtyping of C. parvum by PCR-sequence analysis of the 60?kDa glycoprotein gene identified subtypes IIaA15G1R1 (n?=?15) and IIaA15G2R1 (n?=?1). The G. duodenalis identified included both assemblages E (n?=?32) and A (n?=?1), with the latter belonging to the anthroponotic subtype A2. These data provide new insights into the genetic diversity and age patterns of Cryptosporidium spp. and G. duodenalis in calves in Egypt.  相似文献   

17.
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70 kDa heat shock protein (hsp70) and 60 kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois’ leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.  相似文献   

18.
The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay) were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh) gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61%) were classified as assemblage B (26 as BIII and 16 as BIV), 22 (32%) as assemblage A (3 as AI and 19 as AII) and five (7%) as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A.  相似文献   

19.
Both Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide variety of domestic animals as well as humans worldwide, causing diarrheal diseases. Giardia duodenalis assemblages C and D are specific to canine hosts and zoonotic assemblages A and B are also found in dogs as a reservoir host. In dogs, Cryptosporidium canis is the host-specific species while humans are infected by C. hominis and C. parvum and at least another 16 zoonotic Cryptosporidium species have been reported causing human infections, with C. meleagridis, C. viatorum, and C. ubiquitum being the most frequent. The objective of this study was to determine the prevalence of Cryptosporidium spp. and G. duodenalis from stray dogs in areas of Bangkok and to identify the species and assemblages. Fecal samples (540) were collected from dogs residing in 95 monasteries in 48 districts in the Bangkok metropolitan area. Nested Polymerase Chain Reaction (PCR) was performed using the ssu-rRNA gene for both parasites. In total, 3.0% (16/540) samples were positive for G. duodenalis, with most being G. duodenalis assemblage D (7/16) followed by assemblage C (7/16) and zoonotic assemblage A (2/16). The prevalence of Cryptosporidium spp. was 0.7% (4/540) based on the PCR results and all were the dog genotype C. canis. These results indicated that dogs residing in Bangkok monasteries poses a limited role as source of human giardiosis and cryptosporidiosis.  相似文献   

20.
Giardiasis is a notifiable disease of high prevalence in New Zealand, but there is limited knowledge about the sources of Giardia duodenalis genotypes that can potentially cause human infections. Dairy calves are one environmental source of Giardia isolates, but it is unknown whether they harbor genotypes that are potentially capable of causing infections in humans. To address these questions, 40 Giardia isolates from calves and 30 from humans, living in the same region and collected over a similar period, were genotyped using the β-giardin gene. The G. duodenalis genetic assemblages A and B were identified from both calves and humans, and genotype comparisons revealed a substantial overlap of identical genotypes from the two hosts for both assemblages. Significantly, no assemblage E (the genotype commonly found in cattle elsewhere in the world) has been detected in New Zealand livestock to date. Given recent and rapid land use conversions to dairy farming in many South Island regions of New Zealand, an increasingly large concentration of domestic cattle harboring genotypes potentially capable of causing infections in humans is particularly concerning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号