首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, three identical membrane bioreactors (MBRs) were operated in parallel in order to specify the influence mechanism of hydraulic retention time (HRT) on MBR. The results showed that the removal efficiency of chemical oxygen demand (COD) was stable though it decreased slightly as HRT decreased, but biomass activity and dissolved oxygen (DO) concentration in sludge suspension decreased as HRT decreased. The filamentous bacteria grew easily with decreasing HRT. The extracellular polymeric substances (EPS) concentration and sludge viscosity increased significantly as filamentous bacteria excessively grew. The over growth of filamentous bacteria, the increase of EPS and the decrease of shear stress led to the formation of large and irregular flocs. Furthermore, the mixed liquid suspended solids (MLSS) concentration and sludge viscosity increased significantly as HRT decreased. The results also indicated that sludge viscosity was the predominant factor that affecting hydrodynamic conditions of MBR systems.  相似文献   

2.
The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI3) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage = 20 mg g−1MLSS, FeCI3 dosage = 14 mg g−1MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (Jss) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types.  相似文献   

3.
The major operational problem associated with membrane bioreactors (MBR) is membrane fouling, for which extracellular polymeric substances (EPS) are primarily responsible. In this work both the soluble and bound EPS (i.e. SMP and EPS) produced in an MBR system operating under sludge retention times (SRT) of 10, 15, 20 and 33 days were fractionized by means of membranes having variable molecular weight cutoffs (300 kDa, 100 kDa, 10 kDa & 1 kDa). The results show that increasing the SRT leads to a reduction of SMP and EPS and that these reductions are more pronounced for the SRTs in the range 10–20 days. This reduction is more significant for carbohydrates than for proteins. The decrease of SMP and EPS with increasing SRT from 10 to 20 days led to a significant decrease of the level of fouling. The further increase of SRT to 33 days did not significantly impact on the level of fouling as the SMP and EPS concentrations did not change much.  相似文献   

4.
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated to minimize the effect of suspended solids on membrane fouling. The MBMBR and a conventional membrane bioreactor (CMBR) were operated in parallel for about two months. Unexpectedly, the rate of membrane fouling in MBMBR was about three times of that in CMBR. MBMBR showed a higher cake layer resistance than CMBR due to plenty of filamentous bacteria inhabited in suspended solids in MBMBR. Protein and polysaccharide contents of soluble EPS in MBMBR were obviously larger than those in CMBR. It could be speculated that the overgrowth of filamentous bacteria in MBMBR resulted in severe cake layer and induced a large quantity of EPS, which deteriorated the membrane fouling.  相似文献   

5.
Wu SC  Lee CM 《Bioresource technology》2011,102(9):5375-5380
Soluble extracellular polymeric substances (EPSs) cause membrane fouling in membrane bioreactors (MBRs), correlated with MBR sludge characteristics. Effects of F/M ratios on the evolution of soluble EPSs, fouling propensity of supernatants, and sludge metabolic activity were measured in this study in a two-period sequencing batch reactor (SBR). The experimental results show that fouling propensity was directly correlated with soluble-EPS concentration and composition. Sludge that had entirely lost active cells by long-term starvation released 64.4 ± 0.9 mg/L of humic acids, which caused a rapid increase in membrane resistance (40.67 ± 2.24 × 1011 m−1) during fouling tests. During short-term starvation, induced by incubation at a normal to low F/M ratio of 0.05 d−1, sludge can use previously secreted utilization-associated products (UAPs) to maintain endogenous respiration. Therefore, the strategies of accumulating sludge and prolonging sludge retention time in MBRs may create long-term starvation and promote membrane fouling.  相似文献   

6.
This paper evaluates the critical flux obtained by different techniques including tests with different flux step lengths (20 and 40 min and 7 days) and modes of operation (continuous and intermittent) under low and high MLSS concentrations. The paper also analyses a couple of long-term tests (flow rate of 40 and 20 L/day) to obtain the time required to reach the critical flux experimentally and compares those values with the results obtained numerically from a mathematical model. It was found that intermittent mode with membrane relaxation was useful in controlling the fouling of membrane and in restoring the membrane from fouling at lower MLSS.  相似文献   

7.
In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H2-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 ± 0.05 mg C g−1 volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H2 production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H2-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.  相似文献   

8.
    
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a microbially mediated unique natural phenomenon with an ecological relevance in the global carbon balance and potential application in biotechnology. This study aimed to enrich an AOM performing microbial community with the main focus on anaerobic methanotrophic archaea (ANME) present in sediments from the Ginsburg mud volcano (Gulf of Cadiz), a known site for AOM, in a membrane bioreactor (MBR) for 726 days at 22 (± 3)°C and at ambient pressure. The MBR was equipped with a cylindrical external ultrafiltration membrane, fed a defined medium containing artificial seawater and operated at a cross flow velocity of 0.02 m/min. Sulfide production with simultaneous sulfate reduction was in equimolar ratio between days 480 and 585 of MBR operation, whereas methane consumption was in oscillating trend. At the end of the MBR operation (day 726), the enriched biomass was incubated with 13C labeled methane, 13C labeled inorganic carbon was produced and the AOM rate based on 13C‐inorganic carbon was 1.2 μmol/(gdw d). Microbial analysis of the enriched biomass at 400 and 726 days of MBR operation showed that ANME‐2 and Desulfosarcina type sulfate reducing bacteria were enriched in the MBR, which formed closely associated aggregates. The major relevance of this study is the enrichment of an AOM consortium in a MBR system which can assist to explore the ecophysiology of ANME and provides an opportunity to explore the potential application of AOM.  相似文献   

9.
  总被引:1,自引:0,他引:1  
A submerged membrane bioreactor (MBR) with a working volume of 1.4 L and a hollow fiber microfiltration membrane was used to treat a contaminated raw water supply at a short hydraulic retention time (HRT) of approximately 1 h. Filtration flux tests were conducted regularly on the membrane to determine various fouling resistances, and confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were employed to characterize the biofouling development and sludge cake formation on the membrane. The experimental results demonstrate that the MBR is highly effective in drinking water treatment for the removal of organic pollutants, ammonia, and UV absorbance. During the MBR operation, the fouling materials were not uniformly distributed on the entire surface of all of the membrane fibers. The membrane was covered partially by a static sludge cake that could not be removed by the shear force of aeration, and partially by a thin sludge film that was frequently washed away by aeration turbulence. The filtration resistance coefficients were 308.4 x 10(11) m(-1) on average for the sludge cake, 32.5 x 10(11) m(-1) on average for the dynamic sludge film, and increased from 10.5 x 10(11) to 59.7 x 10(11) m(-1) for the membrane pore fouling after 10 weeks of MBR operation at a filtration flux of 0.5 m3/m2 x d. Polysaccharides and other biopolymers were found to accumulate on the membrane, and hence decreased membrane permeability. More important, the adsorption of biopolymers on the membrane modified its surface property and led to easier biomass attachment and tighter sludge cake deposition, which resulted in a progressive sludge cake growth and serious membrane fouling. The sludge cake coverage on the membrane can be minimized by the separation, with adequate space, of the membrane filters, to which sufficient aeration turbulence can then be applied.  相似文献   

10.
    
Soluble microbial products (SMPs) tend to accumulate in the membrane bioreactor (MBR) systems as a consequence of high membrane rejection and apparently low biodegradability within the wastewater treatment system. The extension of the activated sludge models (ASMs) with SMPs, therefore, has received crucial importance in recent days, particularly considering their potential use as indicators of the membrane fouling propensity. This paper presents a critical review of the formation and degradation kinetics of SMP subdivisions that have so far been used for the mathematical modelling of MBR. The paper identified a simplified approach to incorporate the kinetics of the SMP formation and degradation in the general mathematical models of MBR. It suggested that the inclusion of only four additional linear differential equations in the ASM1-SMP integrated mathematical model could simulate well the effluent quality and membrane fouling prediction. The model would also serve as a useful tool in optimizing operation conditions for better treatability and fouling control.  相似文献   

11.
The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.  相似文献   

12.
生物膜形成机理及影响因素探究   总被引:7,自引:0,他引:7       下载免费PDF全文
生物膜是一种依附于载体材料的特殊微生物聚集体,其大量存在于自然环境中,并在水质净化、废水处理等领域广泛应用.本文介绍了生物膜形成基本原理,综述了有关载体界面性质、胞外多聚物(EPS)关键组分对生物膜形成及其稳定性的影响,并对各学科交叉研究生物膜提供技术思路.  相似文献   

13.
Lab-scale membrane bioreactors (MBRs) were investigated at 12, 18, and 25?°C to identify the correlation between quorum sensing (QS) and biofouling at different temperatures. The lower the reactor temperature, the more severe the membrane biofouling measured in terms of the transmembrane pressure (TMP) during filtration. More extracellular polymeric substances (EPSs) that cause biofouling were produced at 18?°C than at 25?°C, particularly polysaccharides, closely associated with QS via the production of N-acyl homoserine lactone (AHL). However, at 12?°C, AHL production decreased, but the release of EPSs due to deflocculation increased the soluble EPS concentration. To confirm the temperature effect related to QS, bacteria producing AHL were isolated from MBR sludge and identified as Aeromonas sp., Leclercia sp., and Enterobacter sp. through a 16S rDNA sequencing analysis. Batch assays at 18 and 25?°C showed that there was a positive correlation between QS through AHL and biofilm formation in that temperature range.  相似文献   

14.
The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.1–7 kDa) and Superdex 20010/300GL (10–600 kDa) from Amersham Biosciences were used in series with a mobile phase at pH 7 with an ionic strength of 0.223 M (phosphate buffer 50 mM and NaCl 150 mM). A part of the EPS molecules displays hydrophobic and/or ionic interactions with the column packing. Interactions could be modified by changing the mobile phase ionic strength or polarity (addition of acetonitrile). The detection wavelength (210 or 280 nm) affects strongly the EPS chromatogram. For a sludge originating from the same type of biofilms (i.e., anaerobic granules), the differences in EPS fingerprints are mainly due to differences in the absorbance of the chromatographic peaks, linked to EPS molecules content and composition. The EPS fingerprint changes significantly when the EPS originate from another type of anaerobic sludges. In addition, EPS fingerprints were affected by the extraction method used (centrifugation only; heat and centrifugation or cationic exchange resin and centrifugation). This phenomenon was observed mainly for the largest and smallest molecules and molecules which display interactions with column packing.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Extracellular polymeric substances (EPS) are one of the main components of the biofilm and perform important functions in the biofilm system. In this study, two membrane-aerated biofilms (MABs) were developed for the thin and thick biofilms under different surface loading rates (SLRs). Supplies of oxygen and substrates in the MAB were from two opposite directions. This counter diffusion of nutrients resulted in a different growth environment, in contrast to conventional biofilms receiving both oxygen and substrates from the same side. The compositions, distributions and physicochemical properties (solubility and bindability) of EPS in the MABs of different thicknesses under different SLRs were studied. The effect of dissolved oxygen (DO) concentration within the MAB on EPS properties and distribution was investigated. Experimental results showed the different biofilm thicknesses produced substantially different profiles of EPS composition and distribution. Soluble proteins were more dominant than soluble polysaccharides in the inner aerobic layer of the biofilms; in contrast, bound proteins were greater than bound polysaccharides in the outer anoxic or anaerobic layer of the biofilms. The biofilm-EPS matrix consisted mainly of bound EPS. Bound EPS exhibited a hump-shaped profile with the highest content occurring in an intermediate region in the thin MAB and relatively more uniformly in the one half of the biofilm close to the membrane side and then declined towards the biofilm-liquid interface in the thick MAB. The profiles of soluble EPS presented a similar declining trend from the membrane towards the outer region in both thin and thick MABs. The study suggested that not only EPS composition but also EPS distribution and properties (solubility and bindability) played a crucial role in controlling the cohesiveness and maintaining the structural stability and stratification of the MABs.  相似文献   

16.
Yang XL  Song HL  Chen M  Cheng B 《Bioresource technology》2011,102(20):9490-9496
The effect of polymeric ferric chloride (PFC) addition on phosphorus removal and membrane fouling were investigated in an anoxic/oxic submerged membrane bioreactor. The total phosphorus concentration in effluent averaged at 0.26 mg/L with PFC addition of 10-15 mg/L, while the rate of membrane fouling increased 1.6 times over the control MBR (without PFC addition). Three-dimensional excitation-emission matrix fluorescence spectroscopy and Gel Filtration Chromatography analysis indicated that soluble microbial byproduct-like materials and large molecules (M(W)>100 kDa) were one of the main contributors of biofouling. Fourier transform infrared spectrum confirmed that the major components of the cake layer were proteins and polysaccharides materials. Scanning electron microscopy demonstrated that membrane surfaces were covered with compact gel layer formed by organic substances and Energy Dispersive X-ray analysis indicated that ferric metals were the most important inorganic pollutants. Consequently, soluble organic substances and dose of PFC should be controlled to minimize membrane fouling.  相似文献   

17.
Non-spore-forming Ethanoligenens, a novel genus of hydrogen-producing bacteria, is endowed with great application potential in biohydrogen production due to acidophilic and autoaggregating growth. In order to elucidate the mechanism of autoaggregation of Ethanoligenens harbinense, extracellular polymeric substances (EPS) from YUAN-3 had been extracted and analyzed. The EPS was mainly produced during the exponential phase and with protein, carbohydrate and DNA as its main components, with yields of 21.0 ± 0.8 mg/g-cell dry weight (CDW), 16.9 ± 0.8 mg/g-CDW and 3.5 ± 0.5 mg/g-CDW, respectively. Compared with the EPS composition of semi-autoaggregating hydrogen-producing bacteria W1 and non-autoaggregating hydrogen-producing bacteria B49, carbohydrate and protein played an important part in the autoaggregation of YUAN-3.  相似文献   

18.
A review concerning the definition, extraction, characterization, production and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment reactors is given in this paper. EPS are a complex high-molecular-weight mixture of polymers excreted by microorganisms, produced from cell lysis and adsorbed organic matter from wastewater. They are a major component in microbial aggregates for keeping them together in a three-dimensional matrix. Their characteristics (e.g., adsorption abilities, biodegradability and hydrophilicity/hydrophobicity) and the contents of the main components (e.g., carbohydrates, proteins, humic substances and nucleic acids) in EPS are found to crucially affect the properties of microbial aggregates, such as mass transfer, surface characteristics, adsorption ability, stability, the formation of microbial aggregates etc. However, as EPS are very complex, the knowledge regarding EPS is far from complete and much work is still required to fully understand their precise roles in the biological treatment process.  相似文献   

19.
Laspidou and Rittmann (Water Research 36:2711–2720, 2002) proposed that the soluble extracellular polymeric substances (EPS) are identical to soluble microbial products (SMP) in sludge liquor. In this paper, we compared the physicochemical characteristics of the SMP and soluble EPS from original and aerobically or anaerobically digested wastewater sludge. The surface charges, particle sizes, residual turbidities of polyaluminum chloride (PACl) coagulated supernatant, and chemical compositions of the SMP and soluble EPS containing suspensions were used as comparison index. Experimental results revealed that the particles in SMP and soluble EPS fractions extracted from original wastewater sludge, before and after digestion, were not identical in all physicochemical characteristics herein measured. The current test cannot support the proposal by Laspidou and Rittmann (Water Research 36:2711–2720, 2002) that SMP is identical to the soluble EPS from a wastewater sludge.  相似文献   

20.
    
The roles of extracellular polymer substances (EPS) in the shear stability of aerobic and anaerobic flocs were investigated. Both pH and EDTA concentration had a significant effect on the floc stability. The sludge flocs became much weaker as the solution pH increase to above 10. Addition of 1 mM EDTA or more could cause considerable cell erosion and deflocculation of the anaerobic flocs, whereas more than 3 mM EDTA was needed to show its adverse effect on the stability of aerobic flocs. A fraction of the EPS, around 10 mg/g SS for the aerobic flocs and 15 mg/g SS for the anaerobic flocs, could be extracted by fluid shear when the dispersed mass concentration approached the equilibrium. This suggests that most of the dispersed particles were glued by a small amount of readily-extractable EPS fraction. In addition to the abundance of this EPS fraction, its proteins/carbohydrates ratio, about 0.22:1 for the aerobic flocs and 2.66:1 for the anaerobic flocs, also appeared to be an important factor governing the microbial floc stability. A lower content of the readily-extractable EPS fraction and a lower ratio of proteins/carbohydrates were responsible for the greater stability of microbial flocs. The total content of the EPS, however, did not show a direct correlation with the floc stability. A hypothesis about biological flocs with two distinct structural regions was proposed. The outer part contained dispersible cells loosely entangled by the readily-extractable EPS fraction. This part was layered and would become completely dispersed at an infinite shear intensity. On the other hand, the inner part contains biomass in a stable structure tightly glued by EPS, which could not be dispersed by shear except under unfavorable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号