共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Roland F. Schwarz Robyn Branicky Laura J. Grundy William R. Schafer André E. X. Brown 《PLoS computational biology》2015,11(8)
Locomotion is driven by shape changes coordinated by the nervous system through time; thus, enumerating an animal''s complete repertoire of shape transitions would provide a basis for a comprehensive understanding of locomotor behaviour. Here we introduce a discrete representation of behaviour in the nematode C. elegans. At each point in time, the worm’s posture is approximated by its closest matching template from a set of 90 postures and locomotion is represented as sequences of postures. The frequency distribution of postural sequences is heavy-tailed with a core of frequent behaviours and a much larger set of rarely used behaviours. Responses to optogenetic and environmental stimuli can be quantified as changes in postural syntax: worms show different preferences for different sequences of postures drawn from the same set of templates. A discrete representation of behaviour will enable the use of methods developed for other kinds of discrete data in bioinformatics and language processing to be harnessed for the study of behaviour. 相似文献
3.
Abstract: To determine whether protein kinase C (PKC) mediates release of peptides from sensory neurons, we examined the effects of altering PKC activity on resting and evoked release of substance P (SP) and calcitonin gene-related peptide (CGRP). Exposing rat sensory neurons in culture to 10 or 50 n M phorbol 12,13-dibutyrate (PDBu) significantly increased SP and CGRP release at least 10-fold above resting levels, whereas the inactive 4α-PDBu analogue at 100 n M had no effect on release. Furthermore, 100 n M bradykinin increased peptide release approximately fivefold. Down-regulation of PKC significantly attenuated the release of peptides evoked by either PDBu or bradykinin. PDBu at 1 n M or 1-oleoyl-2-acetyl- sn -glycerol at 50 µ M did not alter resting release of peptides, but augmented potassium- and capsaicin-stimulated release of both SP and CGRP approximately twofold. This sensitizing action of PKC activators on peptide release was significantly reduced by PKC down-regulation or by pretreating cultures with 10 n M staurosporine. These results establish that activation of PKC is important in the regulation of peptide release from sensory neurons. The PKC-induced enhancement of peptide release may be a mechanism underlying the neuronal sensitization that produces hyperalgesia. 相似文献
4.
Yelena Koren Raphael Sznitman Paulo E. Arratia Christopher Carls Predrag Krajacic André E. X. Brown Josué Sznitman 《PloS one》2015,10(3)
To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior. 相似文献
5.
6.
Many organisms respond to food deprivation by altering their pattern of movement, often in ways that appear to facilitate dispersal. While the behavior of the nematode C. elegans in the presence of attractants has been characterized, long-range movement in the absence of external stimuli has not been examined in this animal. Here we investigate the movement pattern of individual C. elegans over times of ∼1 hour after removal from food, using two custom imaging set-ups that allow us to track animals on large agar surfaces of 22 cm×22 cm. We find that a sizeable fraction of the observed trajectories display directed motion over tens of minutes. Remarkably, this directional persistence is achieved despite a local orientation memory that decays on the scale of about one minute. Furthermore, we find that such trajectories cannot be accounted for by simple random, isotropic models of animal locomotion. This directional behavior requires sensory neurons, but appears to be independent of known sensory signal-transduction pathways. Our results suggest that long-range directional behavior of C. elegans may not be driven by sensory cues. 相似文献
7.
The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure. 相似文献
8.
Activation of glutamate metabotropic receptors (mGluRs) in nodose ganglia neurons has previously been shown to inhibit voltage-gated
Ca++ currents and synaptic vesicle exocytosis. The present study describes the effects of mGluRs on depolarization-induced phosphorylation
of the synaptic-vesicle-associated protein synapsin I. Depolarization of cultured nodose ganglia neurons with 60 mm KCl resulted in an increase in synapsin I phosphorylation. Application of mGluR agonists 1-aminocyclopentane-1s-3r-dicarboxylic
acid (t-ACPD) and L(+)-2-Amino-4-phosphonobutyric acid (L-AP4) either in combination or independently inhibited the depolarization
induced phosphorylation of synapsin I. Application of the mGluR antagonist (RS)-α-Methyl-4-carboxyphenylglycine (MCPG) blocked
t-ACPD-induced inhibition of synapsin phosphorylation but not the effects of L-AP4. In addition, application of either t-ACPD
or L-AP4 in the absence of KCl induced depolarization had no effect on resting synapsin I phosphorylation. RT-PCR analysis
of mGluR subtypes in these nodose ganglia neurons revealed that these cells only express group III mGluR subtypes 7 and 8.
These results suggest that activation of mGluRs modulates depolarization-induced synapsin I phosphorylation via activation
of mGluR7 and/or mGluR8 and that this process may be involved in mGluR inhibition of synaptic vesicle exocytosis in visceral
sensory neurons of the nodose ganglia.
Received 28 June 2000/Revised: 11 September 2000 相似文献
9.
10.
Two Heteromeric Kinesin Complexes in Chemosensory Neurons and
Sensory Cilia of Caenorhabditis elegans 总被引:2,自引:1,他引:2
下载免费PDF全文

Dawn Signor Karen P. Wedaman Lesilee S. Rose Jonathan M. Scholey 《Molecular biology of the cell》1999,10(2):345-360
Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia. 相似文献
11.
- Download : Download high-res image (79KB)
- Download : Download full-size image
12.
Glutamate Receptor Subtypes in Cultured Cerebellar Neurons: Modulation of Glutamate and γ-Aminobutyric Acid Release 总被引:2,自引:15,他引:2
Vittorio Gallo Rossana Suergiu Claudio Giovannini Giulio Levi 《Journal of neurochemistry》1987,49(6):1801-1809
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system. 相似文献
13.
Nonmotile primary cilia are sensory organelles composed of a microtubular axoneme and a surrounding membrane sheath that houses signaling molecules. Optimal cellular function requires the precise regulation of axoneme assembly, membrane biogenesis, and signaling protein targeting and localization via as yet poorly understood mechanisms. Here, we show that sensory signaling is required to maintain the architecture of the specialized AWB olfactory neuron cilia in C. elegans. Decreased sensory signaling results in alteration of axoneme length and expansion of a membraneous structure, thereby altering the topological distribution of a subset of ciliary transmembrane signaling molecules. Signaling-regulated alteration of ciliary structures can be bypassed by modulation of intracellular cGMP or calcium levels and requires kinesin-II-driven intraflagellar transport (IFT), as well as BBS- and RAB8-related proteins. Our results suggest that compensatory mechanisms in response to altered levels of sensory activity modulate AWB cilia architecture, revealing remarkable plasticity in the regulation of cilia structure. 相似文献
14.
Giovanni Fontana Roberto De Bernardi Federico Ferro Anita Gemignani Maurizio Raiteri 《Journal of neurochemistry》1996,66(1):161-168
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+ -containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved. 相似文献
15.
Apoptosis Induced via AMPA-Selective Glutamate Receptors in Cultured Murine Cortical Neurons 总被引:3,自引:1,他引:3
Abstract: We have investigated the mechanisms of cell death induced by long-term exposure to the glutamate receptor agonist ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [( S )-AMPA]. Using primary cultures of pure neurons (95%) grown in serum-free conditions, we found that 24-h exposure to ( S )-AMPA (0.01–1,000 µ M ) induced concentration-dependent neuronal cell death (EC50 = 3 ± 0.5 µ M ) with cellular changes including neurite blebbing, chromatin condensation, and DNA fragmentation, indicative of apoptosis. ( S )-AMPA induced a delayed cell death with DNA fragmentation occurring in ∼50% of cells at concentrations between 100 and 300 µ M detected using terminal transferase-mediated dUTP nick end-labeling (TUNEL) and agarose gel electrophoresis. Apoptotic chromatin condensation was detected using 4,6-diamidino-2-phenylindole, a fluorescent DNA binding dye. Cell death induced by ( S )-AMPA was attenuated by the AMPA receptor-selective antagonist LY293558 (10 µ M ) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ), yielding EC50 values of 73 ± 5 and 265 ± 8 µ M , respectively, and was unaffected by the NMDA receptor antagonist MK-801 (10 µ M ). The number of apoptotic nuclei induced by 300 µ M ( S )-AMPA (57%) was also reduced substantially by the antagonists LY293558 and CNQX, with only 20% and 18% of neurons, respectively, staining TUNEL-positive at 24 h. In addition, cycloheximide (0.5 µg/ml) also inhibited ( S )-AMPA-induced DNA fragmentation and cell death. Our results show that long-term exposure to AMPA can induce substantial neuronal death involving apoptosis in cultured cortical neurons, suggesting a wide involvement of AMPA-sensitive glutamate receptors in excitotoxic injury and neurodegenerative pathologies. 相似文献
16.
Adenosine Release and Uptake in Cerebellar Granule Neurons Both Occur via an Equilibrative Nucleoside Carrier that Is Modulated by G Proteins 总被引:3,自引:3,他引:3
M. I. Sweeney 《Journal of neurochemistry》1996,67(1):81-88
Abstract: There is debate about the mechanisms mediating adenosine release from neurons. In this study, the release of adenosine evoked by depolarizing cultured cerebellar granule neurons with 50 mM K+ was inhibited by 49 ± 7% in Ca2+-free medium. The remaining release was blocked by dipyridamole (IC50 = 6.4 × 10?8M) and nitrobenzylthioinosine (IC50 = 3.6 × 10?8M), inhibitors of adenosine uptake. Ca2+-dependent release was reduced by 78 ± 9% following a 21-h pretreatment of the cells with pertussis toxin, which ADP-ribosylates Gi/Go G proteins, thereby preventing their dissociation. The nucleoside transporter-mediated component of K+-induced adenosine release also was inhibited by 62 ± 8% by pertussis toxin and was potentiated by 78 ± 11% following cholera toxin treatment, which permanently activates Gs. Uptake of [3H]adenosine into cultured cerebellar granule neurons over a 10-min period was not dependent on extracellular Na+ but was reduced by dipyridamole (IC50 = 3.2 × 10?8M) and nitrobenzylthioinosine (IC50 = 2.6 × 10?8M). Thus, adenosine uptake likely occurs via the same transporter mediating Ca2+-independent adenosine release. Adenosine uptake was potentiated by cholera toxin pretreatment (152 ± 15% of control), but pertussis toxin had no statistically significant effect. It is possible that Gs, Gi/Go, or free Gβγ dimer modulate the equilibrative, inhibitor-sensitive nucleoside carrier to enhance adenosine transport. 相似文献
17.
The extracellular concentration of glutamate is highly regulated due to its excitotoxic nature. Failure of glutamate uptake
or reversed activation of its transporters contributes to neurodegeneration related to some pathological conditions. We have
compared the neurotoxicity of the substrate glutamate uptake inhibitor, l-trans-pyrrolidine-2,4-dicarboxylate (PDC), which promotes glutamate release by heteroexchange, with that of DL-threo-beta-benzyloxyaspartate
(DL-TBOA), a non-substrate inhibitor, in cerebellar granule cell cultures. PDC substantially increases the extracellular concentration
of glutamate during 30 min exposure and causes neuronal death at high concentrations, while DL-TBOA neurotoxicity is only
observed after long-term exposure (8–24 h). During mitochondrial inhibition by 3-nitropropionic acid (3-NP), PDC-induced neuronal
death is facilitated, but not that of DL-TBOA. In cultures containing a higher population of astrocytes DL-TBOA-induced increase
in glutamate levels is more pronounced, but neuronal death is only triggered in the presence of 3-NP. Results suggest that
cerebellar granule neurons are more vulnerable to acute transport-mediated glutamate release than to uptake blockade, which
correlates with the extracellular excitatory amino acids levels. 相似文献
18.
19.
20.
Atsushi Tamura Naohiro Yamada Yuichi Yaguchi Yoshio Machida Issei Mori Makoto Osanai 《PloS one》2014,9(1)
The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs) are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson''s disease. The group I mGluRs are known to modulate the intracellular Ca2+ signaling. To characterize Ca2+ signaling in striatal cells, spontaneous cytoplasmic Ca2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP) in the astrocytes. In both the GFP-negative cells (putative-neurons) and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca2+ transients (referred to as slow Ca2+ oscillations), which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca2+ oscillation. Depletion of the intracellular Ca2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca2+ oscillation in both putative-neurons and astrocytes. The slow Ca2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca2+ oscillation may involve in the neuron-glia interaction in the striatum. 相似文献