共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro model of Gaucher's disease in murine neuroblastoma x rat glioma NG108-15 cells was used to investigate the physiological effects of two specific inhibitors of glucosylceramide synthase, d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d,l-PDMP) and N-butyldeoxynojirimycin (NB-DNJ), which have been suggested as agents for treatment of glycolipid storage disorders. Incubation of NG108-15 cells with conduritol-B-epoxide, a covalent inhibitor of glucosylceramidase, raised the intracellular concentration of glucosylceramide (GC) by more than fourfold, indicating a glycolipid composition equivalent to that of Gaucher's cells. The level of GC was decreased, and the cells were depleted of gangliosides by postincubation with d,l-PDMP or NB-DNJ. Treatment with d,l-PDMP, but not with NB-DNJ, resulted in a dose-dependent reduction of the growth rate and eventually caused cell death in NG108-15 cells on reaching confluency. An in situ detection assay using terminal nucleotidyltransferase indicated that cell degeneration was accompanied by apoptosis. Lipid analysis by high-performance TLC revealed that on incubation with d,l-PDMP, but not with NB-DNJ, the concentration of endogenous ceramide was elevated by threefold. Ceramide elevation and apoptosis were also observed when NG108-15 cells were incubated with daunorubicin, which was previously reported to induce programmed cell death by stimulation of ceramide synthesis. Structural characterization by HPLC and subsequent laser desorption mass spectrometry revealed that the endogenous ceramide contained fatty acids with chain lengths ranging from C14:0 to C24:0. The results indicate that elevation of levels of these ceramide species by incubation with d,l-PDMP or daunorubicin induces programmed cell death in NG108-15 cells. Because ceramide accumulation and cell death were not observed on incubation with NB-DNJ, its use is suggested to be less toxic than that of d,l-PDMP for treatment of Gaucher's disease and other sphingolipid storage disorders. 相似文献
2.
Inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified. 相似文献
3.
Bobbala D Koka S Lang C Boini KM Huber SM Lang F 《Biochemical and biophysical research communications》2008,376(3):494-498
Cyclosporine triggers suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine at the erythrocyte surface. The present study explored whether cyclosporine influences eryptosis of Plasmodium infected erythrocytes, development of parasitemia and thus the course of the disease. Annexin V binding was utilized to depict phosphatidylserine exposure and forward scatter in FACS analysis to estimate erythrocyte volume. In vitro infection of human erythrocytes with Plasmodium falciparum increased annexin binding and decreased forward scatter, effects potentiated by cyclosporine (> or = 0.01 microM). Cyclosporine (> or = 0.001 microM) significantly decreased intraerythrocytic DNA/RNA content and in vitro parasitemia (> or = 0.01 microM). Administration of cyclosporine (5 mg/kg b.w.) subcutaneously significantly decreased the parasitemia (from 47% to 27% of circulating erythrocytes 20 days after infection) and increased the survival of P. berghei infected mice (from 0% to 94% 30 days after infection). In conclusion, cyclosporine augments eryptosis, decreases parasitemia and enhances host survival during malaria. 相似文献
4.
陈昭烈 《中国生物工程杂志》1998,18(6):16-19
细胞培养过程中的细胞凋亡是细胞受环境因素的影响而发生的现象。随着对细胞凋亡的分子生物学和细胞生物学了解的深入,显示了有效地控制动物细胞培养中细胞凋亡的巨大潜力。包括采用DNA重组技术把抗细胞凋亡的基因导入细胞和在培基中加入具有抗细胞凋亡的生存因子或化合物等手段已用于控制细胞培养过程中的细胞凋亡。这些技术将大大延长细胞达到饱和密度后的培养时间,提高细胞培养系统的生产效率。 相似文献
5.
Cell Cycle Arrest of Proliferating Neuronal Cells by Serum Deprivation Can Result in Either Apoptosis or Differentiation 总被引:3,自引:1,他引:3
M. Keith Howard Lindsey C. Burke Carolina Mailhos Arnold Pizzey Christopher S. Gilbert† W. Durward Lawson‡ Mary K. L. Collins§ N. Shaun B. Thomas David S. Latchman 《Journal of neurochemistry》1993,60(5):1783-1791
Abstract: Apoptotic cell death plays a critical role in the development of the nervous system. The death of mature nondividing neurons that fail to receive appropriate input from the target field has been extensively studied. However, the mechanisms mediating the extensive cell death occurring in areas of the developing brain where proliferating neuroblasts differentiate into mature nondividing neurons have not been analyzed. We show here that the cell cycle arrest of a proliferating cell of neuronal origin by removal of serum results in either apoptotic cell death or differentiation to a mature nondividing neuronal cell. The proportion of cells undergoing death or differentiation is influenced in opposite directions by treatment of the cells with cyclic AMP and retinoic acid. This suggests that following the withdrawal of signals stimulating neuroblast cell division, neuronal cells either can cease to suppress a constitutive suicide pathway and hence die by apoptosis or, alternatively, can differentiate into a mature neuronal cell. Regulation of the balance between apoptosis and neuronal differentiation could therefore play a critical role in controlling the numbers of mature neurons that form. 相似文献
6.
Yoshida I Monji A Tashiro K Nakamura K Inoue R Kanba S 《Neurochemistry international》2006,48(8):696-702
The mechanisms of intracellular calcium store depletion and store-related Ca2+ dysregulation in relation to apoptotic cell death in PC12 cells were investigated at physiological temperatures with a leak-resistant fluorescent indicator dye Fura-PE3/AM by a cooled CCD imaging analysis system. Electron microscopic observations have shown thapsigargin (TG; 100 nM)-induced apoptosis in PC12 cells. Thorough starvation of stored Ca2+ by BAPTA/AM (50 μM), or La3+ (100 μM) enhanced while dantrolene (100 μM) attenuated the TG-induced apoptosis by preventing a calcium release from internal stores. An immunoblotting analysis revealed an enhanced expression of GRP78, the hallmark of endoplasmic reticulum (ER) stress when cells were treated by TG along with BAPTA/AM. These results indicate that the depletion of the intracellular Ca2+ stores itself induces the ER stress and apoptosis in PC12 cells without any involvement of the capacitative calcium entry (CCE) or a sustained elevation of intracellular Ca2+ concentrations ([Ca2+]i). 相似文献
7.
A series of isatin analogs containing a hydrophilic group, including a pyridine ring, ethylene glycol group, and a triazole ring, have been synthesized, and their inhibition potency for caspase-3 was measured both in vitro (i.e., recombinant enzyme) and in whole cells (HeLa cells). The analogs having a hydrophilic group, including 12, 13, 16, 38, and 40, have dramatically increased activity in vitro and in HeLa cells compared to the corresponding unsubstituted N-phenyl isatin analogs. 相似文献
8.
Mitochondrion-targeted apoptosis regulators of viral origin 总被引:4,自引:0,他引:4
Boya P Roumier T Andreau K Gonzalez-Polo RA Zamzami N Castedo M Kroemer G 《Biochemical and biophysical research communications》2003,304(3):575-581
During coevolution with their hosts, viruses have "learned" to intercept or to activate the principal signal transducing pathways leading to cell death. A number of proteins from pathophysiologically relevant viruses are targeted to mitochondria and regulate (induce or inhibit) the apoptosis-associated permeabilization of mitochondrial membranes. Such proteins are encoded by human immunodeficiency virus 1, Kaposi's sarcoma-associated herpesvirus, human T-cell leukemia virus-1, hepatitis B virus, cytomegalovirus, and Epstein Barr virus, among others. Within mitochondria, such apoptosis regulators from viral origin can target distinct proteins from the Bcl-2 family and the permeability transition pore complex including the adenine nucleotide translocase, cyclophilin D, the voltage-dependent anion channel, and the peripheral benzodiazepine receptor. Thus, viral proteins can regulate apoptosis at the mitochondrial level by acting on a variety of different targets. 相似文献
9.
Midgut epithelium in Filientomon takanawanum is composed of epithelial cells and single, sporadic regenerative cells. In 80% of analyzed specimens midgut epithelial cells, as fat body and gonads, are infected with rickettsia-like microorganism. In non-infected specimens young and completely differentiated epithelial cells are distinguished among epithelial cells. Characteristic for midgut epithelial cells regionalization in organelles distribution is not observed. Autophagy is the sporadic process, but if the cytoplasm of epithelium cells possesses numerous spherites and sporadic autophagosomes, the apoptosis begins. Necrosis is observed sporadically.In the midgut epithelium cells of about 80% of analyzed specimens rickettsia-like microorganisms are observed. The more rickettsia-like microorganisms occur in the cytoplasm, the more autophagosomes are formed, and the process of apoptosis proceeds intensively. 相似文献
10.
Lo Valon Romain Levayer 《Biology of the cell / under the auspices of the European Cell Biology Organization》2019,111(3):51-66
Cells and tissues are exposed to multiple mechanical stresses during development, tissue homoeostasis and diseases. While we start to have an extensive understanding of the influence of mechanics on cell differentiation and proliferation, how excessive mechanical stresses can also lead to cell death and may be associated with pathologies has been much less explored so far. Recently, the development of new perturbative approaches allowing modulation of pressure and deformation of tissues has demonstrated that compaction (the reduction of tissue size or volume) can lead to cell elimination. Here, we discuss the relevant type of stress and the parameters that could be causal to cell death from single cell to multicellular systems. We then compare the pathways and mechanisms that have been proposed to influence cell survival upon compaction. We eventually describe the relevance of compaction‐induced death in vivo, and its functions in morphogenesis, tissue size regulation, tissue homoeostasis and cancer progression. 相似文献
11.
Agius LM 《Journal of theoretical biology》2004,227(2):219-228
Within a framework of dual involvement of mucosa and submucosa on the one hand, and of the muscularis propria of the bowel wall on the other, it might be valid to consider involvement of the vascular supply as the essential means in itself of not only causing the morphologic lesions in inflammatory bowel disease, but also especially in accounting for persisting patterns of inflammatory response both in ulcerative colitis and in Crohn's disease. Inflammatory bowel disease as a group constitutes a spectrum of biologic and pathobiologic manifestations in terms not only of inflammatory involvement of the bowel wall but also in terms of how the bowel in its turn deals with inflammation as a pathologic lesion in its own right. Parameters of inflammatory bowel activity transcend simple concepts of etiology and pathogenesis as applicable to category disorders such as infections or bowel ischemia. Indeed, the strictly characterized initiation of the inflammatory bowel response as a function of defective regulation of the antigenicity of the luminal contents on the one hand, and on interactions between nitric oxide and free oxygen radicals on the other, might help determine a persistence of tissue damage in inflammatory bowel disease that is either relapsing/remitting or chronic in progression. In a final analysis, perhaps, there might be involved a single central form of pathway induction of dysregulated immune reactivity arising from an early disturbance in activation patterns as induced by the onset of luminal antigenicity at an early or specific-stage, further characterized perhaps by specific forms of intestinal epithelial defects of the bowel mucosa in patients subsequently developing inflammatory bowel disease. Specific genetic markers for disease susceptibility and for therapeutic responsiveness are particularly of interest. The Nucleotide binding oligomerization Domain 2 (NOD2) would recognize microbial lipopolysaccharide or else mark systemic responses to pathogens that are pathogenic to evolving inflammatory bowel disease. 相似文献
12.
Spina-Purrello V Patti D Giuffrida-Stella AM Nicoletti VG 《Neurochemical research》2008,33(12):2583-2592
The enzyme poly(ADP-ribose)polymerase (PARP) has a leader role in the DNA damage survey mechanisms by its nick-sensor function,
but it is also involved in the early events of the programmed cell death, particularly during inflammatory injury, as a coactivator
of NF-kB. In the present study, we evaluated the PARP involvement in the mechanisms of protection and/or cell death in rat
astroglial cell cultures during the early phase of proinflammatory commitment after lipopolysaccharide and interferon gamma
treatment. According with the recent findings that PARP-1 phosphorylation by MAPK/ERK-2 pathway seems to modulate PARP activation,
in time course experiments we demonstrated that a very early PARP activation and expression is able to trigger a cell death
pathway, DNA damage independent, during strong proinflammatory insults, maintaining its role of guardian of the genome stability
only during the normal cell cycling.
Special issue article in honor of Dr. Anna Maria Giuffrida-Stella. 相似文献
13.
用图像分析系统和通道阻断法研究了原代人胎儿鼻咽上皮细胞的调节性容积回缩(regulatory volume decrease,RVD)能力及其机制。结果发现,低渗刺激可诱发鼻咽上皮细胞产生RVD,在160-240 mOsmol/L范围内,RVD强弱与渗透压呈“S”形负相关(r=-0.99,P〈0.05),与细胞肿胀程度呈“S”形正相关(r=0.99,P〈0.05)。Cl-通道阻断剂tamoxifen(20μmol/L),ATP(10mmol/L)或NPPB(100μmol/L)对RVD阻抑率分别为100%(P〈0.01),76.3%(P〈0.01)和62.7%(P〈0.01)。本研究表明,鼻咽上皮细胞受到低渗刺激时可产生RVD,Cl-通道开放是其RVD的关键机制。 相似文献
14.
Jeon H Zheng LT Lee S Lee WH Park N Park JY Heo WD Lee MS Suk K 《Experimental cell research》2011,(14):2007-2018
Small G protein superfamily consists of more than 150 members, and is classified into six families: the Ras, Rho, Rab, Arf, Ran, and RGK families. They regulate a wide variety of cell functions such as cell proliferation/differentiation, cytoskeletal reorganization, vesicle trafficking, nucleocytoplasmic transport and microtubule organization. The small G proteins have also been shown to regulate cell death/survival and cell shape. In this study, we compared the role of representative members of the six families of small G proteins in cell migration and cell death/survival, two cellular phenotypes that are associated with inflammation, tumorigenesis, and metastasis. Our results show that small G proteins of the six families differentially regulate cell death and cell cycle distribution. In particular, our results indicate that Rho family of small G proteins is antiapoptotic. Ras, Rho, and Ran families promoted cell migration. There was no significant correlation between the cell death- and cell migration-regulating activities of the small G proteins. Nevertheless, RalA was not only cytoprotective against multiple chemotherapeutic drugs, but also promigratory inducing stress fiber formation, which was accompanied by the activation of Akt and Erk pathways. Our study provides a framework for further systematic investigation of small G proteins in the perspectives of cell death/survival and motility in inflammation and cancer. 相似文献
15.
16.
用图像分析系统和通道阻断法研究了原代人胎儿鼻咽上皮细胞的调节性容积回缩(regulatoryvolumedecrease,RVD)能力及其机制。结果发现,低渗刺激可诱发鼻咽上皮细胞产生RVD,在160-240mOsmol/L范围内,RVD强弱与渗透压呈“S”形负相关(r=-0.99,P<0.05),与细胞肿胀程度呈“S”形正相关(=0.99,P<0.05)。Cl~-通道阻断剂tamoxifen(20μmol/L),ATP(10mmol/L)或NPPB(100μmol/L)对RVD阻抑率分别为100%(P<0.01),76.3%(P<0.01)和62.7%(P<0.01)。本研究表明,鼻咽上皮细胞受到低渗刺激时可产生RVD,Cl~-通道开放是其RVD的关键机制。 相似文献
17.
Avital Eisenberg-Lerner Adi Kimchi 《Apoptosis : an international journal on programmed cell death》2009,14(4):376-391
Autophagy is a cellular self-catabolic process in which cytoplasmic constituents are sequestered in double membrane vesicles
that fuse with lysosomes where they are degraded. As this catabolic activity generates energy, autophagy is often induced
under nutrient limiting conditions providing a mechanism to maintain cell viability and may be exploited by cancer cells for
survival under metabolic stress. However, progressive autophagy can be cytotoxic and autophagy can under certain settings
substitute for apoptosis in induction of cell death. Moreover, loss of autophagy is correlated with tumorigenesis and several
inducers of autophagy are tumor-suppressor genes. Thus, the relation of autophagy to cancer development is complex and depends
on the genetic composition of the cell as well as on the extra-cellular stresses a cell is exposed to. In this review we describe
the intricate nature of autophagy and its regulators, particularly those that have been linked to cancer. We discuss the multifaceted
relation of autophagy to tumorigenesis and highlight studies supporting a role for autophagy in both tumor-suppression and
tumor-progression. Finally, various autophagy-targeting therapeutic strategies for cancer treatment are presented.
This review is dedicated to the memory of Dr. Avner Eisenberg 1953–2004. 相似文献
18.
Liu CY Chuang PI Chou CL Lin SM Chen HC Chou P Liu YH Yu CT Wang CH Lin HC Kuo HP 《Journal of biomedical science》2004,11(2):214-227
The ability to generate reactive oxidative intermediates is one of the quintessential properties of mature human neutrophils. Endogenously generated oxidants have been shown to be an important mechanism underlying neutrophil cell death. In acute lung inflammation, newly recruited neutrophils further encounter external oxidants, including reactive oxygen and nitrogen intermediates. In our present study, we showed that A1, a constitutive and inducible Bcl-2 homologue expressed in mature circulating human neutrophils, might confer the protection from hydrogen peroxide (H2O2)- and peroxynitrite (ONOO)-induced cell death. Utilizing the myeloid precursor cell line, HL-60, we further examined the hypothesis that A1 was capable of conferring cytoprotective activity against these oxidative stresses. Whereas the control-transfected HL-60 cells expressed small amounts of A1 and were sensitive to the biologically relevant, cell death-inducing oxidants, H2O2 and ONOO, the stable transfectants that overexpressed A1 were significantly more tolerant. Furthermore, there was a correlation between the level of A1 expression and the anti-apoptotic activity. Thus, our results suggest a cytoprotective role of A1 in mature human neutrophils under oxidant stresses in host defense and inflammation. 相似文献
19.
《Cytokine & growth factor reviews》2014,25(5):587-596
Enteroviruses (EVs) are the most common human viral pathogens. They cause a variety of pathologies, including myocarditis and meningoencephalopathies, and have been linked to the onset of type I diabetes. These pathologies result from the death of cells in the myocardium, central nervous system, and pancreas, respectively. Understanding the role of EVs in inducing cell death is crucial to understanding the etiologies of these diverse pathologies. EVs both induce and delay host cell death, and their exquisite control of this balance is crucial for their success as human viral pathogens. Thus, EVs are tightly involved with cell death signaling pathways and interact with host cell signaling at multiple points. Here, we review the literature detailing the mechanisms of EV-induced cell death. We discuss the mechanisms by which EVs induce cell death, the signaling pathways involved in these pathways, and the strategies by which EVs antagonize cell death pathways. We also discuss the role of cell death in both the resulting pathology in the host and in the facilitation of viral spread. 相似文献
20.
During early development, the mammalian embryo is resistant to pro-apoptotic signals because of biochemical properties of the mitochondrion and nucleus. Mitochondria of the bovine two-cell embryo are resistant to depolarization because of low amounts of the proapoptotic protein BAX and high concentrations of the anti-apoptotic protein BCL2. As development proceeds, BAX content increases, BCL2 content declines, and mitochondria becomes capable of pore formation and depolarization in response to pro-apoptotic signals. The nucleus of the two-cell embryo is resistant to degradation by the DNase DFFB because epigenetic modifications, including DNA methylation and histone deacetylation, mask internucleosomal sites for DNA cleavage. Blastomere DNA becomes progressively less methylated during development so that DNA becomes accessible to cleavage by DFFB. 相似文献