首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS). To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH) involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity.  相似文献   

2.
3.
Geo. H. Tuttle 《CMAJ》1930,22(2):285-286
  相似文献   

4.
5.
6.
Histochemical investigation of the saiga liver during ontogeny was carried out. The dynamics of accumulation, consumption, and localization of glycogen as well as neutral and acid glycoproteins were studied. Maximum accumulation of glycogen and neutral glycoproteins was observed during late fetal development, while maximum consumption was specific for newborns. Acid glycoproteins proved to become involved in carbohydrate metabolism during postnatal development. Localization of glycogen and glycoproteins was described.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Carbohydrate Metabolism in Spirochaeta stenostrepta   总被引:11,自引:4,他引:7       下载免费PDF全文
The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO(2), and H(2). Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from (14)C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO(2), and H(2), without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B(12) were either stimulatory or required for growth.  相似文献   

14.
The moderately thermophilic acidophilic bacteria Sulfobacillus thermosulfidooxidans, strain 1269, S. thermosulfidooxidanssubsp. asporogenes, strain 41, and the thermotolerant strain S. thermosulfidooxidanssubsp. thermotolerans K1 prefer mixotrophic growth conditions (the concomitant presence of ferrous iron, thiosulfate, and organic compounds in the medium). In heterotrophic and autotrophic growth conditions, these sulfobacilli can grow over only a few culture transfers. In cell-free extracts of these sulfobacilli, key enzymes of the Embden–Meyerhof–Parnas, pentose-phosphate, and Entner–Doudoroff pathways were found. The role of a particular pathway depended on the cultivation conditions. All of the enzymes assayed were most active under mixotrophic conditions in the presence of Fe2+and glucose, suggesting the operation of all of the three major pathways of carbohydrate metabolism under these conditions. However, the operation of the Entner–Doudoroff pathway in strain 41 was restricted under mixotrophic conditions. After the first culture transfer from mixotrophic to heterotrophic conditions, the utilization of glucose occurred only via the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. After the first culture transfer from mixotrophic to autotrophic conditions, the activity of carbohydrate metabolism enzymes decreased in all of the strains studied; in strain K1, only the glycolytic pathway remained operative. The high activity of fructose-bisphosphate aldolase, remaining in strain 41 cells under these conditions, suggests the involvement of this enzyme in the reactions of the Calvin cycle or of gluconeogenesis.  相似文献   

15.
16.
17.
18.
Recent studies have demonstrated that biological rhythms haveimportant roles in avian reproduction. In the photoperiodicstimulation of the reproductive complex, there are two systemsinvolved in the interpretation of day length. One system isentrained by the photoperiod, probably by dawn. This entrainedsystem in turn entrains two light-sensitive phases which occurlater in the day. If the photoperi od is long enough, it ispresent during the sensitive phases when it can induce the productionof luteinzing hormone and follicle stimulating hormone. Theinterrenal gland appears to be a part of the entraining systeminasmuch as injections of corticosterone can set a sensitivephase when light can induce gonadal development. The annual cycle of photosensitivity and photorefractorinessappeals to be controlled by the temporal relations between thedaily rhythms of corticosterone and prolactin which change seasonally.When the hormonal relations of photosensitive and photorefractorybirds are simulated by injections of the hormones, the appropriateconditions (photosensitivity or photorefractonness) can be produced.Seasonal changes in the hormonal relations are not direct reflectionsof changes in the photoperiod; they depend on more complex physiologicalexperiences. The systems involved in egg laying and parental behavior mayalso have a temporal basis of biological rhythms. For example,the intensity of the pigeon cropsac response depends on thetime of daily injections of prolactin relative to those of corticosterone.It is apparent that the daily rhythm constitutes the basic structuialunit in the temporal organizationtion of avian reproduction.  相似文献   

19.
20.
《Endocrine practice》2009,15(3):254-262
ObjectiveTo review the pertinent basic and clinical research describing the complex effects of excess thyroid hormone on carbohydrate metabolism.MethodsWe performed a MEDLINE search of the English-language literature using a combination of words (ie, “thyrotoxicosis and diabetes,” “diabetic ketoacidosis and thyroid storm,” “carbohydrate metabolism and hyperthyroid,” “glucose homeostasis and thyrotoxicosis”) to identify key articles addressing various aspects of the thyroid’s influence on carbohydrate metabolism.ResultsThyroid hormone affects glucose homeostasis via its actions on a variety of organs including increased hepatic glucose output, increased futile cycling of glucose degradation products between the skeletal muscle and the liver, decreased glycogen stores in the liver and skeletal muscle, altered oxidative and nonoxidative glucose metabolism, decreased active insulin output from the pancreas, and increased renal insulin clearance. Thyroid hormone also affects adipokines and adipose tissue, further predisposing the patient to ketosis.ConclusionsThyrotoxicosis can alter carbohydrate metabolism in a type 2 diabetic patient to such an extent that diabetic ketoacidosis develops if untreated. Based on the current understanding of this relationship, all diabetic patients should be screened for thyroid dysfunction because correcting hyperthyroidism can profoundly affect glucose homeostasis. Similarly, patients presenting in diabetic ketoacidosis should undergo a thyroid function assessment. (Endocr Pract. 2009;15:254-262)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号