首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitors present in dilute acid-treated lignocellulosic hydrolysates would show great effect on the growth and product formation of microorganisms. To understand their inhibitory law and mechanism on oleaginous microorganism could help improving the efficiency of lignocellulose hydrolysis, detoxification, and lipid fermentation. The effects of four representative alcohol compounds present in lignocellulosic hydrolysates, including furfuryl alcohol, vanillyl alcohol, catechol, hydroquinone on the cell growth and lipid accumulation of Trichosporon fermentans were systematically investigated in this work. The toxicity of selected alcohol compounds was well related to their log P value except furfuryl alcohol, whose log P value was the minimum but with the highest toxicity to T. fermentans. The inhibition of all the alcohol compounds on the growth of T. fermentans was more serious than on the lipid synthesis. Also, the growth of T. fermentans was more sensitive to the variation of inoculum size, temperature, and initial pH than lipid synthesis in the presence of alcohol compounds. Initial pH had more profound influence on the lipid fermentation than inoculum size and cultural temperature did. Careful control of fermentation conditions could be helpful for improving lipid yield of T. fermentans in lignocellulosic hydrolysates. Among the four alcohol compounds tested, most alcohol compounds showed inhibition on both sugar consumption and malic enzyme activity of T. fermentans. However, vanillyl alcohol had little influence on the malic enzyme activity. Similarly, all alcohol compounds except vanillyl alcohol exerted damage on the cell membrane of T. fermentans.  相似文献   

2.
The effect of salts of organic acids on washed and non-washed chloroplast membranes during freezing was investigated. Thylakoids were isolated from spinach leaves (Spinacia oleracea L.) and, prior to freezing, salts of various organic acids or inorganic salts or both were added. Freezing occurred for 3 to 4 hours at −25 C. After thawing membrane integrity was investigated by measuring the activity of cyclic photophosphorylation.  相似文献   

3.

Background

Ionic liquid (IL) pretreatment has emerged as a promising technique that enables complete utilization of lignocellulosic biomass for biofuel production. However, imidazolium IL has recently been shown to exhibit inhibitory effect on cell growth and product formation of industrial microbes, such as oleaginous microorganisms. To date, the mechanism of this inhibition remains largely unknown.

Results

In this study, the feasibility of [Bmim][OAc]-pretreated rice straw hydrolysate as a substrate for microbial lipid production by Geotrichum fermentans, also known as Trichosporon fermentans, was evaluated. The residual [Bmim][OAc] present in the hydrolysate caused a reduction in biomass and lipid content (43.6 and 28.1%, respectively) of G. fermentans, compared with those of the control (7.8 g/L and 52.6%, respectively). Seven imidazolium ILs, [Emim][DEP], [Emim]Cl, [Amim]Cl, [Bmim]Cl, [Bzmim]Cl, [Emim][OAc], and [Bmim][OAc], capable of efficient pretreatment of lignocellulosic biomass were tested for their effects on the cell growth and lipid accumulation of G. fermentans to better understand the impact of imidazolium IL on the lipid production. All the ILs tested inhibited the cell growth and lipid accumulation. In addition, both the cation and the anion of IL contributed to IL toxicity. The side chain of IL cations showed a clear impact on toxicity. On examining IL anions, [OAc]? was found to be more toxic than those of [DEP]? and Cl?. IL exhibited its toxicity by inhibiting sugar consumption and key enzyme (malic enzyme and ATP-citrate lyase) activities of G. fermentans. Cell membrane permeability was also altered to different extents in the presence of various ILs. Scanning electron microscopy revealed that IL induces fibrous structure on the surface of G. fermentans cell, which might represent an adaptive mechanism of the yeast to IL.

Conclusions

This work gives some mechanistic insights into the impact of imidazolium IL on the cell growth and lipid accumulation of oleaginous yeast, which is important for IL integration in lignocellulosic biofuel production, especially for microbial lipid production.
  相似文献   

4.
To understand the effects of the interaction between Mycoplasma and cells on the host cellular function, it is important to elucidate the influences of infection of cells with Mycoplasma on nuclear enzymes such as DNA Topoisomerase type I (Topo I). Human Topo I participates in DNA transaction processes and is the target of anti-cancer drugs, the camptothecins (CPTs). Here we investigated the mechanism by which infection of human tumor cells with Mycoplasma fermentans affects the activity and expression of cellular Topo I, and the anti-cancer efficacy of CPT. Human cancer cells were infected or treated with live or sonicated M. fermentans and the activity and expression of Topo I was determined. M. fermentans significantly reduced (by 80%) Topo I activity in the infected/treated tumor cells without affecting the level of Topo I protein. We demonstrate that this reduction in enzyme activity resulted from ADP-ribosylation of the Topo I protein by Poly-ADP-ribose polymerase (PARP-1). In addition, pERK was activated as a result of the induction of the MAPK signal transduction pathway by M. fermentans. Since PARP-1 was shown to be activated by pERK, we concluded that M. fermentans modified the cellular Topo I activity by activation of PARP-I via the induction of the MAPK signal transduction pathway. Moreover, the infection of tumor cells with M. fermentans diminished the inhibitory effect of CPT. The results of this study suggest that modification of Topo I activity by M. fermentans may alter cellular gene expression and the response of tumor cells to Topo I inhibitors, influencing the anti-cancer capacity of Topo I antagonists.  相似文献   

5.
Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 μM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.  相似文献   

6.
In experiments performed using graphite electrodes poised by a potentiostat (+200 mV versus Ag/AgCl) or in a microbial fuel cell (with oxygen as the electron acceptor), the Fe(III)-reducing organism Geothrix fermentans conserved energy to support growth by coupling the complete oxidation of acetate to reduction of a graphite electrode. Other organic compounds, such as lactate, malate, propionate, and succinate as well as components of peptone and yeast extract, were utilized for electricity production. However, electrical characteristics and the results of shuttling assays indicated that unlike previously described electrode-reducing microorganisms, G. fermentans produced a compound that promoted electrode reduction. This is the first report of complete oxidation of organic compounds linked to electrode reduction by an isolate outside of the Proteobacteria.  相似文献   

7.
The choline-containing phosphoglycolipid, MfGL-II, is the major polar lipid of Mycoplasma fermentans PG18. Anti-MfGL-II antisera raised in rabbits using the purified MfGL-II as an immunogen were employed in immunogold electron microscopic and immunofluorescence studies showing that MfGL-II is uniformly distributed and exposed on the cell surface of M. fermentans cells. The specificity of the antibodies was determined by immunostaining of lipid extracts separated by thin layer chromatography. The antibodies recognize lipids specific to M. fermentans but did not cross-react with lipid extracts of M. penetrans, M. capricolum, M. gallisepticum or Acholeplasma laidlawii. As phosphocholine almost completely abolished antibody interaction with MfGL-II in an ELISA assay it is suggested that the anti-MfGL-II repertoire is composed primarily of anti-phosphocholine antibodies. The anti-MfGL-II antisera inhibit the attachment of M. fermentans to Molt-3 lymphocytes suggesting that MfGL-II plays a major role in M. fermentans-host cell interaction.  相似文献   

8.
Zygosaccharomyces rouxii and Tetragenococcus halophilus exhibit remarkable salt tolerance and play roles in high-salt fermented food production. This study investigated the effect of co-culture with T. halophilus on Z. rouxii based on analysis of the viability of Z. rouxii in high-salt environments, the plasma membrane integrity, Na+, K+-ATPase activity, amino acid content of Z. rouxii cell after salt stress and organic acids assay. The results showed both T. halophilus broth supernatant and intracellular component of T. halophilus increased the viability of Z. rouxii in the 12 % environment. Co-cultured Z. rouxii cells maintained better plasma membrane integrity and lowered Na+, K+-ATPase activity than single-cultured after salt stress. Co-cultured Z. rouxii cells exhibited higher contents of aspartic acid, threonine, serine, asparagine, glutamic acid, alanine, α-amino-n-butyric acid, methionine, homo-cystine, arginine and proline compared with single-cultured after salt stress. More contents of propionic acid, lactic acid and L-pyroglutamic acid and lower contents of L-malic acid and citric acid were detected in co-culture broth. This study shows preculture of T. halophilus and then co-culture with Z. rouxii enhanced the viability of Z. rouxii in high-salt environment. The results may contribute to further understand the interactions between Z. rouxii and T. halophilus in high-salt environments.  相似文献   

9.
Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively). Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermo)stability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.  相似文献   

10.
The effect of cold plasma on E. coli cells was studied. It was shown that the treatment of E. coli cells with cold plasma caused partial or total disruption of the plasma membrane integrity, which was accompanied by a release of intracellular substances into the extracellular environment. A quantitative assessment of the extent of the damage to the cell membrane showed that a loss of no more than 23.6% of intracellular substances (calculated by the proportion of the intracellular nucleotide release) is sufficient to lead to cell death. The use of media with different ionic strength levels to create osmotic shock showed that the treatment of E. coli cells with cold plasma significantly decreased the cell wall strength.  相似文献   

11.

Background

Mycoplasma fermentans has been associated with respiratory, genitourinary tract infections and rheumatoid diseases but its role as pathogen is controversial. The purpose of this study was to probe that Mycoplasma fermentans is able to produce respiratory tract infection and migrate to several organs on an experimental infection model in hamsters. One hundred and twenty six hamsters were divided in six groups (A-F) of 21 hamsters each. Animals of groups A, B, C were intratracheally injected with one of the mycoplasma strains: Mycoplasma fermentans P 140 (wild strain), Mycoplasma fermentans PG 18 (type strain) or Mycoplasma pneumoniae Eaton strain. Groups D, E, F were the negative, media, and sham controls. Fragments of trachea, lungs, kidney, heart, brain and spleen were cultured and used for the histopathological study. U frequency test was used to compare recovery of mycoplasmas from organs.

Results

Mycoplasmas were detected by culture and PCR. The three mycoplasma strains induced an interstitial pneumonia; they also migrated to several organs and persisted there for at least 50 days. Mycoplasma fermentans P 140 induced a more severe damage in lungs than Mycoplasma fermentans PG 18. Mycoplasma pneumoniae produced severe damage in lungs and renal damage.

Conclusions

Mycoplasma fermentans induced a respiratory tract infection and persisted in different organs for several weeks in hamsters. This finding may help to explain the ability of Mycoplasma fermentans to induce pneumonia and chronic infectious diseases in humans.  相似文献   

12.
Acidaminococcus fermentans utilized citrate or the citrate analog aconitate as an energy source for growth, and these tricarboxylates were used simultaneously. Citrate utilization and uptake showed biphasic kinetics. High-affinity citrate uptake had a Kt of 40 μM, but the Vmax was only 25 nmol/mg of protein per min. Low-affinity citrate utilization had a 10-fold higher Vmax, but the Ks was greater than 1.0 mM. Aconitate was a competitive inhibitor (Ki = 34μM) of high-affinity citrate uptake, but low-affinity aconitate utilization had a 10-fold-lower requirement for sodium than did low-affinity citrate utilization. On the basis of this large difference in sodium requirements, it appeared that A. fermentans probably has two systems of tricarboxylate uptake: (i) a citrate/aconitate carrier with a low affinity for sodium and (ii) an aconitate carrier with a high affinity for sodium. Citrate was catabolized by a pathway involving a biotin-requiring, avidin-sensitive, sodium-dependent, membrane-bound oxaloacetate decarboxylase. The cells also had aconitase, but this enzyme was unable to convert citrate to isocitrate. Since cell-free extracts converted either aconitate or glutamate to 2-oxoglutarate, it appeared that aconitate was being catabolized by the glutaconyl-CoA decarboxylase pathway. Exponentially growing cultures on citrate or citrate plus aconitate were inhibited by the sodium/proton antiporter, monensin. Because monensin had no effect on cultures growing with aconitate alone, it appeared that citrate metabolism was acting as an inducer of monensin sensitivity. A. fermentans cells always had a low proton motive force (<50 mV), and cells treated with the protonophore TCS (3,3′,4′,5-tetrachlorosalicylanide) grew even though the proton motive force was less than 20 mV. On the basis of these results, it appeared that A. fermentans was depending almost exclusively on a sodium motive force for its membrane energetics.  相似文献   

13.
The rate of hydrolysis of the 1-0-alkenyl group of sn-1-alk-1′-enyl-2-acyl-glycerylphosphorylethanolamine (alkenyl, acyl-GPE; ethanolamine plasmalogen) by plasmalogenase is higher in oligodendroglial cell-enriched fractions from bovine brain compared with fractions enriched in neuronal perikarya and astroglia. The distribution of plasmalogenase activity in membrane fractions isolated from bovine oligodendroglia has been compared with that of ‘marker’ enzymes. The highest specific activity was in a fraction enriched in plasma membranes, whilst most activity was recovered in an endoplasmic reticulum membrane fraction. In bovine oligodendroglial cell homogenates, the enzyme had a neutral pH optimum, had no requirement for divalent cations and its activity towards 1-alkenyl-GPE (lysoplasmalogen) was half that with alkenyl, acyl-GPE. C16 alkenyl groups were hydrolysed more rapidly than C18 alkenyl groups. With 3H-labelled alkenyl, acyl-GPE as substrate, radioactivity in released aldehydes appeared in fatty acids esterified in phospholipid while the oxidation of fatty aldehydes was blocked by the addition of NADH. An NAD-dependent aldehyde dehydrogenase was found to be present in oligodendroglia which exhibited highest activity towards C14C18 aldehydes (Km, 2 μM).  相似文献   

14.
To analyze the nature of the target cell determinants recognized and bound by killer lymphocytes during lymphocyte-mediated cytolysis (LMC), the specific binding of serologically active tumor cell membrane fractions to cytotoxic T lymphocytes has been investigated. Particulate membrane fractions and soluble antigen preparations (extracted by papain or 3 M KCl) from tumor target cells were tested for their ability to inhibit the destruction of intact 51Cr-labeled target cells by killer lymphocytes in vitro. The effect of papain-solubilized tumor cell antigen on the binding of killer lymphocytes to tumor cell monolayers was also evaluated. Direct assays to determine the extent of binding of unlabeled or radioiodinated soluble antigen (extracted by papain or deoxycholate) to cytotoxic lymphocytes were carried out. In marked contrast to their serological activity, all of these particulate and soluble preparations failed to inhibit LMC or bind to killer lymphocytes in an immunologically specific way. It is suggested that killer lymphocytes recognize and bind to an antigenic complex whose organization is dependent upon the integrity of the target cell membrane.  相似文献   

15.
Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio–product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness.  相似文献   

16.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   

17.
18.
Microbial oil production from sulphuric acid treated rice straw hydrolysate (SARSH) by Trichosporon fermentans was performed for the first time. Fermentation of SARSH without detoxification gave a poor lipid yield of 1.7 g/l, which was much lower than the result with glucose or xylose as the single carbon source (13.6 g/l or 9.9 g/l). The detoxification pretreatment, including overliming, concentration, and adsorption by Amberlite XAD-4 improved the fermentability of SARSH significantly by removing the inhibitors in SARSH. A total biomass of 28.6 g/l with a lipid content of 40.1% (corresponding to a lipid yield of 11.5 g/l) could be achieved after cultivation of T. fermentans on the detoxified SARSH for 8 days. Moreover, besides SARSH, T. fermentans could also utilize mannose, galactose, or cellobiose, in hydrolysates of other natural lignocellulosic materials as the single carbon source to grow and accumulate lipid with a high yield (at least 10.4 g/l). Hence, it is a promising strain for microbial oil production and thus biodiesel preparation from agro-industrial residues, especially lignocellulosic materials.  相似文献   

19.
The relationship between cell inactivation and membrane damage was studied in two gram-positive organisms, Listeria monocytogenes and Bacillus subtilis, and two gram-negative organisms, Yersinia enterocolitica and Escherichia coli, exposed to chlorine in the absence and presence of 150 ppm of organic matter (Trypticase soy broth). L. monocytogenes and B. subtilis were more resistant to chlorine in distilled water. The addition of small amounts of organic matter to the chlorination medium drastically increased the resistance of both types of microorganisms, but this effect was more marked in Y. enterocolitica and E. coli. In addition, the survival curves for these microorganisms in the presence of organic matter had a prolonged shoulder. Sublethal injury was not detected under most experimental conditions, and only gram-positive cells treated in distilled water showed a relevant degree of injury. The exposure of bacterial cells to chlorine in distilled water caused extensive permeabilization of the cytoplasmic membrane, but the concentrations required were much higher than those needed to inactivate cells. Therefore, there was no relationship between the occurrence of membrane permeabilization and cell death. The addition of organic matter to the treatment medium stabilized the cytoplasmic membrane against permeabilization in both the gram-positive and gram-negative bacteria investigated. Exposure of E. coli cells to the outer membrane-permeabilizing agent EDTA increased their sensitivity to chlorine and caused the shoulders in the survival curves to disappear. Based on these observations, we propose that bacterial envelopes could play a role in cell inactivation by modulating the access of chlorine to the key targets within the cell.  相似文献   

20.
The effects of organic solvents (oleic acid and dibutyl phthalate) on viability and membrane integrity of Taxus cuspidata cells were investigated in two-liquid-phase suspension cultures. It has been found that the cell viability, electrical conductivity and concentration of malonyl dialdehyde did not change obviously when the content of oleic acid or dibutyl phthalate was 2% (v/v), but varied markedly when the contents of oleic acid or dibutyl phthalate were raised to 6% (v/v) or more, indicating that the organic solvents at higher concentrations severely affected the cell membrane permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号