首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? Premise of study: Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments. ? Methods: We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use efficiency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use efficiency. ? Key results: Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic. ? Conclusions: Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability.  相似文献   

2.
Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets), a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability) could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs) or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen deposition on higher trophic levels it is essential to take into account species life-history traits.  相似文献   

3.
In drawing up Red Lists, the extinction risks of butterflies and other insects are currently assessed mainly by using information on trends in distribution and abundance. Incorporating information on species traits may increase our ability to predict species responses to environmental change and, hence, their vulnerability. We summarized ecologically relevant life-history and climatic niche traits in principal components, and used these to explain the variation in five vulnerability indicators (Red List status, Endemicity, Range size, Habitat specialisation index, Affinity for natural habitats) for 397 European butterfly species out of 482 species present in Europe. We also evaluated a selection of 238 species to test whether phylogenetic correction affected these relationships. For all but the affinity for natural habitats, climatic niche traits predicted more variation in vulnerability than life-history traits; phylogenetic correction had no relevant influence on the findings. The life-history trait component reflecting mobility, development rate, and overwintering stage, proved the major non-climatic determinant of species vulnerability. We propose that this trait component offers a preferable alternative to the frequently used, but ecologically confusing generalist-specialist continuum. Our analysis contributes to the development of trait-based approaches to prioritise vulnerable species for conservation at a European scale. Further regional scale analyses are recommended to improve our understanding of the biological basis of species vulnerability.  相似文献   

4.
Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land‐use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio‐temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro‐ and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20‐year period (1994–2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land‐use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient‐demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light‐demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency. Hence, our results indicate specific effects of these often confounded anthropogenic processes.  相似文献   

5.
The aim of this study was to detect suites of traits related to whole plant and seed morphology, phenology and resource use – including water – in species differing in successional status. Twenty traits were measured on 55 species representative of 5 successional stages in Mediterranean southern France, including eight pertaining to phenology and five to water economy. Suites of traits that changed along succession in agreement with the acquisition/conservation trade-off were completed by continuous changes in phenology. Early successional species had leaves with a high specific leaf area that were produced and lost continuously through the growing season. Late-successional species were taller with long-lived, high δ13C leaves produced during short periods, most of them persisting during summer, and produced large seeds requiring a long ripening period. Replacement of species occurred with change in strategies of drought survival: early successional species escaped drought by dying before summer; later herbaceous species maintained favourable water status in relation to leaf shedding during summer; late successional trees with a large body allowing access to a large pool of resources, produced dense leaves that could tolerate desiccation. These changes occurred concomitantly with a shift in CSR strategies, using traits related to resource use, plant size and flowering phenology: ruderal herbs were replaced by more stress-tolerant herbs and shrubs throughout the succession, with competitive trees dominating the latest successional stage. These results suggest that the breadth of functional variability found in natura is not predicted by the CSR framework, and calls for a more integrated view of whole plant functioning.  相似文献   

6.
Assembly theory predicts that filtering processes will select species by their attributes to build a community. Some filters increase functional similarity among species, while others lead to dissimilarity. Assuming converging processes to be dominant within habitats, we tested in this study whether species assemblages across a wide range of habitats can be distinguished quantitatively by their mean trait compositions. In addition, we investigated how many and which traits are needed to describe the differences between species assemblages best. The approach has been applied on a dataset that included 12 plant traits and 7644 vegetation relevés covering a wide range of habitats in the Netherlands. We demonstrate that due to the dominant role of converging processes 1) the functional composition can explain up to 80% of the floristic differences between species assemblages using seven plant traits, showing that plant trait combinations provide a powerful tool for predicting the occurrence of species assemblages across different habitats; 2) to achieve a high performance, traits should be taken from different strategy components, i.e. traits that are functionally orthogonal, which does not necessarily coincide with low trait‐trait correlations; 3) the different strategy components identified in this study correspond to the strategy components of some conventional plant ecological strategy schemes (PESS) – schemes to describe the variation between individual species. However, some PESS merge traits into one strategy component that are shown to be functionally different when predicting species assemblages. If such PESS is used to predict assemblages, this leads to a loss in predictive capacity. Potentially, our new approach is globally applicable to quantify community assembly patterns. However this needs to be tested.  相似文献   

7.
Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.  相似文献   

8.
Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.  相似文献   

9.
Quantifying relationships between plant functional traits and abiotic gradients is valuable for evaluating potential responses of forest communities to climate change. However, the trajectories of change expected to occur in tropical forest functional characteristics as a function of future climate variation are largely unknown. We modeled community level trait values of Costa Rican rain forests as a function of current and future climate, and quantified potential changes in functional composition. We calculated per‐plot community weighted mean (CWM) trait values for leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen (N) and phosphorus (P) content, and wood basic specific gravity (WSG), for tree and palm species in 127 0.25 ha plots. We modeled the response of CWM traits to current temperature and precipitation gradients using generalized additive modeling. We then predicted and mapped CWM traits values under current and future climate, and quantified potential changes under a global warming scenario (RCP8.5, year 2050). We calculated the area within the multi trait functional space occupied by forest plots under both current and future climate, and determined potential changes in functional space occupied by forest plots. Overall, precipitation predicted CWM traits better than temperature. Models indicated increases in CWM SLA, N and P, and a decrease in CWM LDMC under climate change. Lowland forest communities converged on a single direction of change towards more acquisitive CWM trait values, indicating a change in forest functional composition resulting from a changed climate. Functional space occupied by forest plots was reduced by 50% under the future climate. Functional composition changes may have further effects on forests ecosystem services. Assessing functional trait spatial‐gradients can help bridge the gap between species‐based biogeography and biogeochemical approaches to strengthen biodiversity and ecosystem services conservation efforts.  相似文献   

10.
高新月  戴君虎  陶泽兴 《生态学报》2022,42(24):10253-10263
植物物候是植物生活史中的重要性状,也是指示气候与自然环境变化的重要指标,现已成为全球变化领域的研究热点之一。传统物候研究多假设物候由气候因素决定,如气温、降水、光照等,并主要从植物物候的年际变化角度探讨了气候因素对物候特征的影响。然而,不同物种的物候存在较大差异表明植物物候还与自身生物学特性(如系统发育和功能性状)有关,但植物生物学特性如何影响植物物候仍缺乏深入研究。基于北京地区44种木本植物1965-2018年的展叶始期和开花始期观测资料,以展叶始期和开花始期的3类物候特征(平均物候期、物候对温度的响应敏感度和物候期的积温需求)为例,探究植物物候特征与系统发育和功能性状的关系。首先,利用系统发育信号Blomberg’s K和进化模型检验植物物候特征是否具有系统发育保守性,并通过系统发育信号表征曲线直观表达植物物候特征的进化模式;之后,利用广义估计方程分析植物生活型、传粉型与物候特征的关系,以揭示不同植物的资源利用方式及生存策略的差异。研究发现:(1)除展叶始期的温度敏感度外,其余物候特征的进化均受随机遗传漂变和自然选择力的共同作用,可推断物候特征具有系统发育保守性,即亲缘关系越近的物种物候特征越相似。(2)开花始期的系统发育信号强度比展叶始期更大,表明繁殖物候的系统发育可能比生长物候更保守。(3)植物展叶始期及其积温需求与生活型密切相关。灌木比乔木的展叶时间早、积温需求少。植物开花始期与传粉型相关,风媒植物开花显著早于虫媒植物。研究成果有助于深入理解物候变化的生物学机制,对于丰富物候学的理论研究有重要意义,同时对植物保护也具有重要的指导价值。  相似文献   

11.
Macroecology, global change and the shadow of forgotten ancestors   总被引:1,自引:1,他引:0  
Many recent studies have evaluated how global changes will affect biodiversity, and have mainly focused on how to develop conservation strategies to avoid, or at least minimize, extinctions due to shifts in suitable habitats for the species. However, these complex potential responses might be in part structured in phylogeny, because of the macroecological traits underlying them. In this comment, we review recent analytical developments in phylogenetic comparative methods that can be used to understand patterns of trait changes under environmental change. We focus on a partial regression approach that allows for partitioning the variance of traits into a fraction attributed to a pure ecological component, a fraction attributed to phylogenetically structured environmental variation (niche conservatism) and a fraction that may be attributed to phylogenetic effects only. We then develop a novel interpretation for linking these components for multiple traits with potential responses of species to global environmental change (i.e. adaptation, range shifts or extinctions). We hope that this interpretation will stimulate further research linking evolutionary components of multiple traits with broad-scale environmental changes.  相似文献   

12.
Anthropogenic disturbances have serious impacts on ecosystems across the world. Understanding the effects of disturbance on woodlands, especially in regions where local people depend on these natural resources, is essential for sustainable natural resource management and biodiversity conservation. In this study, we evaluated the effects of anthropogenic disturbance, specifically selective logging of Brachystegia floribunda, on woodlands by comparing species composition, species diversity and functional diversity of woody plants between disturbed and undisturbed woodlands. We combined species data and functional trait data for leaves, fruits and other traits related to resource and disturbance responses to calculate functional indices (functional richness, evenness and divergence) and community‐weighted means of each trait. Shifts in taxonomic species composition were analysed using nonmetric multi‐dimensional scaling. Species composition differed significantly between disturbed and undisturbed woodlands. Tree density was greater in disturbed woodlands, whereas evenness, functional evenness and functional divergence were greater in undisturbed woodlands. In terms of forest cover, selective logging of B. floribunda appeared to have little impact on Miombo woodlands, but some shifts in functional traits, such as the shift from a deciduous to evergreen phenology, may increase the vulnerability of these ecosystems to environmental change, especially drought.  相似文献   

13.
Intraspecific trait diversity can promote the success of a species, as complementarity of functional traits within populations may enhance its competitive success and facilitates resilience to changing environmental conditions. Here, we experimentally determined the variation and relationships between traits in 15 strains of the toxic dinoflagellate Alexandrium ostenfeldii derived from two populations. Measured traits included growth rate, cell size, elemental composition, nitrogen uptake kinetics, toxin production and allelochemical potency. Our results demonstrate substantial variation in all analysed traits both within and across populations, particularly in nitrogen affinity, which was even comparable to interspecific variation across phytoplankton species. We found distinct trade‐offs between maximum nitrogen uptake rate and affinity, and between defensive and competitive traits. Furthermore, we identified differences in trait variation between the genetically similar populations. The observed high trait variation may facilitate development and resilience of harmful algal blooms under dynamic environmental conditions.  相似文献   

14.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

15.
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.  相似文献   

16.
We use national scale data to test the hypothesis that nitrogen (N) deposition is strongly negatively correlated with plant species richness in a wide range of ecosystem types. Vegetation plots from a national ecological surveillance programme were drawn from heathland, acid, calcareous and mesotrophic grassland habitats. Mean species number and mean plant traits were calculated for each plot and related to atmospheric N deposition. There was a significant reduction in species richness with N deposition in acid grassland and heathland even after fitting covarying factors. In acid grassland and heathland, evidence from trait changes suggested that acidification rather than increased fertility was responsible for species loss. In contrast, calcareous grassland showed evidence of eutrophication in response to increasing N deposition. Loss of species richness from chronic N deposition is apparent in infertile grasslands and heathland. Mechanisms associated with loss of species richness differ between habitats so mitigation of N deposition should be targeted to habitat type.  相似文献   

17.
Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities.  相似文献   

18.
The relative roles of genetic differentiation and developmental plasticity in generating latitudinal gradients in life histories remain insufficiently understood. In particular, this applies to determination of voltinism (annual number of generations) in short‐lived ectotherms, and the associated trait values. We studied different components of variation in development of Chiasmia clathrata (Lepidoptera: Geometridae) larvae that originated from populations expressing univoltine, partially bivoltine or bivoltine phenology along a latitudinal gradient of season length. Indicative of population‐level genetic differentiation, larval period became longer while growth rate decreased with increasing season length within a particular phenology, but saw‐tooth clines emerged across the phenologies. Indicative of phenotypic plasticity, individuals that developed directly into reproductive adults had shorter development times and higher growth rates than those entering diapause. The most marked differences between the alternative developmental pathways were found in the bivoltine region suggesting that the adaptive correlates of the direct development evolve if exposed to selection. Pupal mass followed a complex cline without clear reference to the shift in voltinism or developmental pathway probably due to varying interplay between the responses in development time and growth rate. The results highlight the multidimensionality of evolutionary trajectories of life‐history traits, which either facilitate or constrain the evolution of integrated traits in alternative phenotypes.  相似文献   

19.
A central issue in plant evolutionary ecology is to understand how several coordinated suites of traits (i.e. traits syndrome) may be jointly selected within a single species. This study aims to describe patterns of variation and co‐variation of functional traits in a water‐stressed tree population and test their relationships with performance traits. Within a Mediterranean population of Fagus sylvatica experiencing recurrent summer droughts, we investigated the phenotypic variation of leaf unfolding phenology, leaf area (LA), leaf mass per area (LMA), leaf water content (LWC), water use efficiency (WUE) estimated by carbon isotopic discrimination (d13C), twig Huber‐value (HV: the stem cross‐section divided by the leaf area distal to the stem), wood density (WDens), and leaf nitrogen content (Nmass). First, a principal component analysis revealed that two main axes structured the phenotypic variability: the first axis opposed leaf unfolding earliness and LWC to LMA and WUE; the second axis opposed LA to HV. These two axes can be interpreted as the opposition of two strategies (water economy versus water uptake) at two distinct scales (leaf for the first axis and branches for the second axis). Second, we found that LMA, LA, leaf unfolding and LWC responded differently to competition intensity, while WUE, WDens and HV did not correlate with competition. Third, we found that all studied functional traits were related to growth and/or reproductive performance traits and that these relationships were frequently non‐linear, showing strong interactions between traits. By highlighting phenotypic clustering of functional traits involved in response to water stress and by evidencing antagonistic selection favouring intermediate trait values as well as trait combinations, our study brought new insights on how natural selection operates on plant functional traits in a stressful environment.  相似文献   

20.
Fishing disturbance on ecosystems leads to changes in community structure and composition, which may have drastic implications for ecosystem functional performance. Functional redundancy, defined as species sharing similar functional roles, is a community property that plays an important role in preventing functional changes in ecosystems under pressure. In this study, we suggest that functional redundancy may be achieved through trait abundance (i.e. large amounts of a trait, hereafter “common traits”), or through trait richness (i.e. large numbers of distinct taxa exhibiting the same trait, hereafter “widespread traits”). We assessed the variability of both measures obtained from epifaunal and infaunal communities in soft-bottom trawling grounds. Sampling sites were located in four Mediterranean areas that were subjected to different levels of trawling effort. Common and widespread traits measures were based on the analysis of biological traits linked to key soft-bottoms functions such as nutrient cycling, bentho-pelagic coupling and habitat provision. The role of rare species in both measures was also assessed and we observed that, in our study sites, rare species generally exhibited the same traits as the most abundant species. Common and widespread traits measures provided complementary information on benthic functional redundancy. Thus, we suggest that a combination of the two measures should be used to appropriately assess benthic functional redundancy in trawling grounds. As redundancy is a component of ecosystem resilience, functional redundancy evaluation is important to assess the overall integrity of ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号