首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia plays an important role during the evolution of cancer cells and their microenvironment. Emerging evidence suggests communication between cancer cells and their microenvironment occurs via exosomes. This study aimed to clarify whether hypoxia affects angiogenic function through exosomes secreted from leukemia cells. We used the human leukemia cell line K562 for exosome-generating cells and human umbilical vein endothelial cells (HUVECs) for exosome target cells. Exosomes derived from K562 cells cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h were isolated and quantitated by nanoparticle tracking analysis. These exosomes were then cocultured with HUVECs to evaluate angiogenic activity. The exosomes secreted from K562 cells in hypoxic conditions significantly enhanced tube formation by HUVECs compared with exosomes produced in normoxic conditions. Using a TaqMan low-density miRNA array, we found a subset of miRNAs, including miR-210, were significantly increased in exosomes secreted from hypoxic K562 cells. We demonstrated that cancer cells and their exosomes have altered miRNA profiles under hypoxic conditions. Although exosomes contain various molecular constituents such as proteins and mRNAs, altered exosomal compartments under hypoxic conditions, including miR-210, affected the behavior of endothelial cells. Our results suggest that exosomal miRNA derived from cancer cells under hypoxic conditions may partly affect angiogenic activity in endothelial cells.  相似文献   

2.
Expression of adhesion molecules may play an important role in the interaction of tumor cells with vascular endothelial cells during tumor invasion and metastasis. In this study, the adhesive force of human hepatoma HepG2 cells to human umbilical vein endothelial cells (HUVECs) was investigated using a micropipette aspiration technique. Expression of an adhesion molecule, E-selectin, was also observed by immunofluorescence microscopy. In particular, the adhesive force after stimulation of HUVECs with recombinant human interleukin-1beta (rhIL-1beta) was examined. The results demonstrated that the adhesive force of HepG2 cells to stimulated HUVECs is significantly higher than that of unstimulated control cells, and that immunofluorescence of E-selectin in stimulated HUVECs showed a higher fluorescent intensity compared to control cells. Moreover, addition of monoclonal anti-human E-selectin decreased the adhesive force of HepG2 cells to stimulated HUVECs by 50%. These results suggest that endothelial E-selectin may be a main mediator of carcinoma metastasis of malignant tumor through blood circulation, possibly increasing the adhesive force of human hepatoma HepG2 cells to HUVECs in the early stage of metastases.  相似文献   

3.
Active interactions between endothelial cells and smooth muscle cells (SMCs) are critical to maintaining the SMC phenotype. Exosomes play an important role in intercellular communication. However, little is known about the mechanisms that regulate endothelial cells and SMCs crosstalk. We aimed to determine the mechanisms underlying the regulation of the SMC phenotype by human umbilical vein endothelial cells (HUVECs) through exosomes. We found that HUVECs overexpressing miR-206 upregulated contractile marker (α-SMA, Smoothelin and Calponin) mRNA expression in SMCs. We also found that the expression of miR-206 by HUVECs reduced exosome production by regulating ADP-Ribosylation Factor 6 (ARF6) and sodium/calcium exchanger 1 (NCX1). Using real-time PCR and western blot analysis, we showed that HUVEC-derived exosomes decreased the expression of contractile phenotype marker genes (α-SMA, Smoothelin and Calponin) in SMCs. Furthermore, a reduction of the miR-26a-containing exosomes secreted from HUVECs affects the SMC phenotype. We propose a novel mechanism in which miR-206 expression in HUVECs maintains the contractile phenotype of SMCs by suppressing exosome secretion from HUVECs, particularly miR-26a in exosomes, through targeting ARF6 and NCX1.  相似文献   

4.
5.
Tumor angiogenesis is a complicated process based upon a sequence of interactions between tumor and vessel endothelial cells. Tumor conditioned medium has been widely used to stimulate endothelial cells in vitro angiogenesis. This work was aimed to investigate the effects of gold nanoparticles (GNPs) on angiogenesis in hepatic carcinoma-conditioned endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured with conditioned medium (CM) from the human hepatocarcinoma cell line HepG2 (HepG2-CM), and then treated with different concentrations of GNPs. The effects of GNPs on the viability, migration and active VEGF level of HUVECs were investigated by MTT assay, wound healing assay and transwell chamber assay, and ELISA assay, respectively. The data showed that GNPs significantly inhibited HUVECs proliferation and migration induced by HepG2-CM, and also reduced the levels of active VEGF in the co-culture system. Then, the alterations in morphology and ultrastructure of HUVECs detected by atomic force microscopy (AFM) showed that there appeared obvious pseudopodia, larger membrane particle sizes and much rougher surface in HUVECs after HepG2-CM treatment, which were all reversed after GNPs treatment. Changes in cytoskeleton of HUVECs determined by immunocytochemistry demonstrated that GNPs treatment remarkably inhibited the activation effect of HepG2-CM on HUVECs, which was associated with the disruption of actin filaments induced by GNPs. This study indicates that GNPs can significantly inhibit HepG2-CM activated endothelial cell proliferation and migration through down-regulation of VEGF activity and disruption of cell morphology, revealing the potential applications of GNPs as antiangiogenic agent for the treatment of hepatic carcinoma.  相似文献   

6.
Chemerin, a chemoattractant protein, is involved in endothelial dysfunction and vascular inflammation in pathological conditions. In a recent study, we observed the upregulation of chemerin in endothelial cells following in vitro treatment with Treponema pallidum. Here, we investigated the role of chemerin in endothelial cells activation induced by the T. pallidum predicted membrane protein Tp0965. Following stimulation of human umbilical vein endothelial cells (HUVECs) with Tp0965, chemerin and its receptor chemerin receptor 23 (ChemR23) were upregulated, companied with elevated expression of Toll-like receptor 2. Furthermore, chemerin from HUVECs activated endothelial cells via chemerin/ChemR23 signaling in an autocrine/paracrine manner, characterized by upregulated expression of intercellular adhesion molecule 1, E-selectin, and matrix metalloproteinase-2. Activation of endothelial cells depended on the mitogen-activated protein kinase signaling pathway. In addition, Tp0965-induced chemerin promoted THP-1-derived macrophages migration to endothelial cells, also via the chemerin/ChemR23 pathway. The RhoA/ROCK signaling pathway was also involved in THP-1-derived macrophages migration in response to chemerin/ChemR23. Our results highlight the role of Tp0965-induced chemerin in endothelial cells dysfunction, which contributes to the immunopathogenesis of vascular inflammation of syphilis.  相似文献   

7.
Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1 week. After the treatment with PC12-derived exosomes, MSCs developed neuron-like morphology, and gene and protein expressions of neuronal markers were upregulated. Microarray analysis showed that the expression of miR-125b, which is known to play a role in neuronal differentiation of stem cells, was much higher in PC12-derived exosomes than in exosomes from B16-F10 melanoma cells. These results suggest that the delivery of miRNAs contained in PC12-derived exosomes is a possible mechanism explaining the neuronal differentiation of MSC.  相似文献   

8.
9.
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.  相似文献   

10.
Exosomes are small membrane vesicles released by a variety of cell types. Exosomes contain genetic materials, such as mRNAs and microRNAs (miRNAs), implying that they may play a pivotal role in cell-to-cell communication. Mesenchymal stem cells (MSCs), which potentially differentiate into multiple cell types, can migrate to the tumor sites and have been reported to exert complex effects on tumor progression. To elucidate the role of MSCs within the tumor microenvironment, previous studies have suggested various mechanisms such as immune modulation and secreted factors of MSCs. However, the paracrine effects of MSC-derived exosomes on the tumor microenvironment remain to be explored. The hypothesis of this study was that MSC-derived exosomes might reprogram tumor behavior by transferring their molecular contents. To test this hypothesis, exosomes from MSCs were isolated and characterized. MSC-derived exosomes exhibited different protein and RNA profiles compared with their donor cells and these vesicles could be internalized by breast cancer cells. The results demonstrated that MSC-derived exosomes significantly down-regulated the expression of vascular endothelial growth factor (VEGF) in tumor cells, which lead to inhibition of angiogenesis in vitro and in vivo. Additionally, miR-16, a miRNA known to target VEGF, was enriched in MSC-derived exosomes and it was partially responsible for the anti-angiogenic effect of MSC-derived exosomes. The collective results suggest that MSC-derived exosomes may serve as a significant mediator of cell-to-cell communication within the tumor microenvironment and suppress angiogenesis by transferring anti-angiogenic molecules.  相似文献   

11.
Circulating exosomes delivering microRNAs are involved in the occurrence and development of cardiovascular diseases. How are the circulating exosomes involved in the repair of endothelial injury in acute myocardial infarction (AMI) convalescence (3-7 days) was still not clear. In this study, circulating exosomes from AMI patients (AMI-Exo) and healthy controls (Normal-Exo) were extracted. In vitro and in vivo, our study showed that circulating exosomes protected endothelial cells (HUVECs) from oxidative stress damage; meanwhile, Normal-Exo showed better protective effects. Through the application of related inhibitors, we found that circulating exosomes shuttled between HUVECs via dynamin. Microarry analysis and qRT-PCR of circulating exosomes showed higher expression of miR-193a-5p in Normal-Exo. Our study showed that miR-193a-5p was the key factor on protecting endothelial cells in vitro and in vivo. Bioinformatics analyses found that activin A receptor type I (ACVR1) was the potential downstream target of miR-193a-5p, which was confirmed by ACVR1 expression and dual-luciferase report. Inhibitor of ACVR1 showed similar protective effects as miR-193a-5p. While overexpression of ACVR1 could attenuate protective effects of miR-193a-5p. To sum up, these findings suggest that circulating exosomes could shuttle between cells through dynamin and deliver miR-193a-5p to protect endothelial cells from oxidative stress damage via ACVR1.  相似文献   

12.
13.
Acute myeloid leukemia (AML) is the most common type of leukemia in adults. AML cells secrete angiogenic factors to remodel vasculature and acquire chemoresistance; however, antiangiogenic drugs are often ineffective in AML treatment. Cancer cell-derived exosomes can induce angiogenesis, but their role in vascular remodeling during AML is unclear. Here, we found that exosomes secreted by AML cells promoted proliferation and migration and tube-forming activity of human umbilical vein endothelial cells (HUVECs), whereas HUVECs conferred chemoresistance to AML cells. AML cell-derived exosomes contained vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) messenger RNA and induced VEGFR expression in HUVECs. Furthermore, they enhanced glycolysis, which correlated with HUVEC proliferation, tube formation, and resistance to apoptosis. Thus, AML cells secrete VEGF/VEGFR-containing exosomes that induce glycolysis in HUVECs leading to vascular remodeling and acquisition of chemoresistance. These findings may contribute to the development of novel therapeutic strategies targeting exosomes in AML.  相似文献   

14.
Vascular endothelial growth factor (VEGF) promotes the growth of solid tumor mainly via VEGF receptor-1 and receptor-2, which are expressed preferentially in proliferating endothelial cells. Therefore, a strategy for simultaneous blockage of both VEGF receptors may have a useful therapeutic effect in tumor growth. In this study, we utilized a fusion protein which is composed of receptor binding domain of VEGF-A (RBDV) and the constant region fragment (Fc) of a human immunoglobulin G1 (IgG1), to interfere with the growth of human umbilical vein endothelial cells (HUVECs) via VEGF receptors. The results showed that RBDV-IgG1 Fc was able to bind with both VEGF receptor-1 and receptor-2. In addition, RBDV-IgG1 Fc could decrease VEGF-induced proliferation and tube formation among HUVECs. Moreover, the cytotoxic test showed RBDV-IgG1 Fc could also enhance the cytotoxic activity of human natural killing cells. The data are suggesting that the fusion protein, RBDV-IgG1 Fc, may have potential as an angiogenesis antagonist for future tumor therapy.  相似文献   

15.
microRNA-126 (miR-126), an endothelial-specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR-126-based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR-126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR-126 (Exo-miR-126) by ultracentrifugation. In vitro study, Exo-miR-126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis-related vascular endothelial growth factor (VEGF) and angiotensin-1 (Ang-1) were up-regulated after incubation with Exo-miR-126. Additionally, the expression level of phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR-126 in HUVECs. Particularly, the Exo-miR-126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo-miR-126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR-126 may be a promising strategy to promote angiogenesis.  相似文献   

16.
Cancer-secreted exosomes are critical mediators of cancer-host crosstalk. In the present study, we showed the delivery of miR-21-5p from colorectal cancer (CRC) cells to endothelial cells via exosomes increased the amount of miR-21-5p in recipient cells. MiR-21-5p suppressed Krev interaction trapped protein 1 (KRIT1) in recipient HUVECs and subsequently activated β-catenin signaling pathway and increased their downstream targets VEGFa and Ccnd1, which consequently promoted angiogenesis and vascular permeability in CRC. A strong inverse correlation between miR-21-5p and KRIT1 expression levels was observed in CRC-adjacent vessels. Furthermore, miR-21-5p expression in circulating exosomes was markedly higher in CRC patients than in healthy donors. Thus, our data suggest that exosomal miR-21-5p is involved in angiogenesis and vascular permeability in CRC and may be used as a potential new therapeutic target.Subject terms: Cancer microenvironment, Colon cancer  相似文献   

17.
The liver is the organ that responds to nutritional disturbances including magnesium deficiency. The present study evaluated cellular responses to magnesium deficiency using model cells of the liver, namely, HepG2 cells as hepatocytes, RAW264.7 cells as Kupffer cells and human umbilical vein endothelial cells (HUVECs) as vascular endothelial cells; we examined effects of culture with magnesium deficient medium on cell responses in individual types of cells as well as interactive responses among cells. Metabolomic analyses indicated that magnesium deficiency differentially affected the cellular content of metabolites among HepG2 cells, RAW264.7 cells and HUVECs. The cellular content of the metabolites in HepG2 cells and HUVECs was also affected by the conditioned medium from RAW264.7 cells cultured with the magnesium-deficient media. The changes in HUVECs partly resembled those of the livers of magnesium-deficient rats previously described. RNA-seq analyses indicated that magnesium deficiency modulated the expression levels of molecules related to the ubiquitin-proteasome pathway and oxidative stress/antioxidant response in HepG2 cells and RAW264.7 cells, respectively. Furthermore, when HUVECs were co-cultured with RAW264.7 cells, lipopolysaccharide-induced expression of interleukin (IL)-1β and IL-6 was enhanced by magnesium deficiency, depending on the presence of RAW264.7 cells. The present study reveals that magnesium deficiency affects cellular metabolism in HepG2 liver cells, RAW264.7 macrophages and HUVECs, and that the modulation of cellular responses to extracellular magnesium deficiency in HUVECs depends on the presence of RAW264.7 cells. The complex responses in individual cells and through cell interactions partly explain the regulatory reaction to magnesium deficiency in the liver.  相似文献   

18.
Y Chen  X Gou  X Ke  H Cui  Z Chen 《PloS one》2012,7(7):e40965
Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). In this study, we made a three-dimensional (3D) tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs) in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM) of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I) secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.  相似文献   

19.
Hepatocellular carcinoma (HCC) is a common malignancy and a leading cause of cancer death worldwide. Hepatitis B x-interacting protein (HBXIP), a cofactor of survivin, was originally identified by binding with the C-terminus of the HBx and negatively regulated the activity of HBx. In this study, the effect of HBXIP on the hepatoma cells-induced angiogenesis was investigated. Proliferation and migration of human umbilical vein endothelial cells (HUVECs) were detected by MTT and transwell assay, respectively. Tube formation and chick chorioallantoic membrane model were used to observe the angiogenesis. Vascular endothelial growth factor activity was assayed using ELISA kits. Western blotting was performed to examine the protein expression. Our results indicated that overexpression of HBXIP increased HepG2 cell-induced endothelial cells migration, proliferation, and angiogenesis, which may be related to increasing phosphorylation of endothelial NO synthase in HUVECs. These results suggest that HBXIP may play an important role in tumorigenesis by enhancing angiogenesis in HCC.  相似文献   

20.
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号