首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The membrane-bound selenate reductase of Enterobacter cloacae SLD1a-1 is purified in low yield and has relatively low activity in the pure form compared to that of other oxyanion reductases, such as the membrane-bound and periplasmic nitrate reductases. A microtiter plate assay based on the original quartz cuvette viologen assay of Jones and Garland (R.W. Jones, P.B. Garland, Biochem. J 164 (1977) 199-211) was developed specifically for analysis of such low-abundant, labile oxyanion reductases. The plate assay detects the enzyme-dependent reoxidation of reduced methyl viologen spectrophotometrically at 600 nm. The assay is quick, uses a minimal sample volume (<5 microl), can simultaneously test a range of alternative substrates, and permits activity measurements on multiple samples. We demonstrate the accuracy and versatility of the microtiter plate assay by application to the kinetic analysis, inhibition, and pH optimization of the membrane-bound selenate reductase from E. cloacae SLD1a-1. Results show that the membrane-bound selenate reductase has optimum activity at pH approximately 8 and its active site is able to accommodate larger inhibitory complexes resulting in mixed-type inhibition, in the presence of selenate and potassium thiocyanate.  相似文献   

2.
Mycobacterium tuberculosis dTDP-d-glucose 4,6-dehydratase (RmlB) is the second enzyme for the biosynthesis of dTDP-l-rhamnose, which is a sugar donor to the synthesis of the cell wall linker, d-N-acetylglucosamine-l-rhamnose. RmlB is essential to mycobacterial growth and is not found in humans; therefore, it is a potential target for developing new anti-tuberculosis drugs. So far, there has been no suitable method for high-throughput screening of RmlB inhibitors. Here, the recombinant M. tuberculosis RmlB was purified and an absorbance-based microtiter plate assay was developed for RmlB activity. It could be used for high-throughput screening of RmlB inhibitors. The kinetic properties of M. tuberculosis RmlB, including optimal pH, optimal temperature, the effect of metal ions, and the kinetic parameters, were determined with this assay. The inhibitory effects of dTTP and dTDP on M. tuberculosis RmlB were also studied with the assay.  相似文献   

3.
The alcohol dehydrogenase from Thermus sp. ATN1 (TADH) was characterized biochemically with respect to its potential as a biocatalyst for organic synthesis. TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (>99%) during asymmetric reduction of ketones. TADH is active in the presence of 10% (v/v) water-miscible solvents like 2-propanol or acetone, which permits the use of these solvents as sacrificial substrates in substrate-coupled cofactor regeneration approaches. Furthermore, the presence of a second phase of a water-insoluble solvent like hexane or octane had only minor effects on the enzyme, which retained 80% of its activity, allowing the use of these solvents in aqueous/organic mixtures to increase the availability of low-water soluble substrates. A further activity of TADH, the production of carboxylic acids by dismutation of aldehydes, was investigated. This reaction usually proceeds without net change of the NAD+/NADH concentration, leading to equimolar amounts of alcohol and carboxylic acid. When applying cofactor regeneration at high pH, however, the ratio of acid to alcohol could be changed, and full conversion to the carboxylic acid was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号