首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5 % cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.  相似文献   

2.
Robinia pseudoacacia, a nitrogen-fixing, clonal tree species native to the central Appalachian and Ozark Mountains, is considered to be one of the top 100 worldwide woody plant invaders. We initiated this project to determine the impact of black locust (Robinia pseudoacacia) on an upland coastal ecosystem and to estimate the spread of this species within Cape Cod National Seashore (CCNS). We censused 20 × 20 m plots for vegetation cover and environmental characteristics in the center of twenty randomly-selected Robinia pseudoacacia stands. Additionally, paired plots were surveyed under native overstory stands, comprised largely of pitch pine (Pinus rigida) and mixed pitch pine–oak (Quercus velutina and Quercus alba) communities. These native stands were located 20 m from the edge of the sampled locust stand and had similar land use histories. To determine the historical distribution of black locust in CCNS, we digitized and georeferenced historical and current aerial photographs of randomly-selected stands. Ordination analyses revealed striking community-level differences between locust and pine–oak stands in their immediate vicinity. Understory nonnative species richness and abundance values were significantly higher under Robinia stands than under the paired native stands. Additionally, animal-dispersed plant species tended to occur in closer stands, suggesting their spread between locust stands. Robinia stand area significantly decreased from the 1970’s to 2002, prompting us to recommend no management action of black locust and a monitoring program and possible removal of associated animal-dispersed species. The introduction of a novel functional type (nitrogen-fixing tree) into this xeric, nutrient-poor, upland forested ecosystem resulted in ‘islands of invasion’ within this resistant system.  相似文献   

3.
The responses of aboveground parts of the forest to changes in environmental factors and stand age is well studied, but the same is not true for the belowground parts of the forest. Two plantation black locust (Robinia pseudoacacia L.) forest sites were taken in the Loess Plateau of China, one in the drier, infertile, more sandy area of the middle Loess Plateau, and another in the wetter, fertile, more clay-filled area of the southern Loess Plateau. At each site, both a younger (8-year-old) plantation stand and an older (30-year-old) plantation stand were included to study the effects of soil physicochemical properties and stand age on the fine root (<2?mm) biomass and vertical distribution of black locust forests. Root samples were taken with soil cores to a depth of 100?cm. The fine root biomass decreased from the middle site to the southern site for both stand ages, as expected, and the decrease could be due to a higher fine root N concentration associated with a higher fine root turnover rate at the southern site. There was a similar rooting pattern, though not deeper, in the drier, sandy site as predicted based on soil water infiltration and evaporation demands. The different effects of stand characters (e.g., tree density, tree height) on the fine root distribution as compared with the environmental properties may contribute partly to the similar pattern found in the two sites. The fine root biomass increased with stand age in both sites. In contrast to the evident difference in fine root biomass, there was no clear trend in the fine root vertical distribution pattern with stand age. Our results indicate that fine roots are likely to respond to changes in soil physicochemical properties and stand age by changing fine root biomass rather than by varying rooting pattern.  相似文献   

4.
Floodplain forests are characterized by high and increasing levels of invasions by plant species, but the factors that drive their spread are insufficiently understood. Using data from 708 plots surveyed twice (1998, 2008) supplemented with further data (management, stand age, distance to dispersal corridors, type of ecosystems invaded) we analyzed the factors which shape the local distribution, growth, persistence and spread of three invasive alien tree species (Acer negundo, Ailanthus altissima, Robinia pseudoacacia) in the National Park Donau-Auen in Austria. Using Generalized Linear Models (GLMs), we found that the distribution of the study species per plot is contingent on stand age (R. pseudoacacia), type of floodplain forest (A. negundo, A. altissima) and distance to the next water body (A. negundo). For all study species, colonization of new plots between both surveys is driven by short distance spread from already established invasion foci. Moreover, recipient habitats (softwood vs. hardwood floodplain forests) modify invasion success in species-specific ways. The probability of occurrence and colonization of plots located in softwood floodplain forests is higher for A. negundo, whereas A. altissima more frequently colonizes hardwood floodplain forests. Persistence of R. pseudoacacia decreases with stand age, whereas its growth rate is significantly higher in plots located in zones where management is allowed than in those which are not managed. Persistence and growth of the other two study species were not related to any explanatory variables analyzed. The on-going spread of the study species in the National Park Donau-Auen suggests that their local distribution is in disequilibrium, i.e. not all suitable habitat patches have yet been colonized. This implies that increased management efforts are necessary to reverse the spread of alien tree species in the study area and to maintain the high conservation value of this iconic area which protects one of the largest floodplain forests in Europe.  相似文献   

5.
Invasive species belong to the main threats to dry grassland biodiversity. That́s why nature conservation managers seek the best ways to remove them and to support the restoration process of original natural habitats. We studied the effect of clear-cutting of invasive black locust (Robinia pseudoacacia L.) on the recovery of former species rich dry grassland vegetation. Ten permanent plots where R. pseudoacacia was cut down were long-term monitored in nature reserves protecting dry grasslands. The representation of dry grassland plants has been increased four times and the representation of synanthropic plants has been decreased two times during 40 years of succession even though R. pseudoacacia still relatively successfully resisted eradication efforts. During the succession after R. pseudoacacia cutting down, the Ellenberg indicator values for nutrients have decreased significantly, but no decrease in the nitrate content of the soil was observed. The long-term monitoring revealed that the restoration of dry grasslands invaded by R. pseudoacacia is possible but very time consuming.  相似文献   

6.

Background and aims

Invasion by N2-fixing species may alter biogeochemical processes. We hypothesized that the grade of invasion by the N2-fixer black locust (Robinia pseudoacacia L.) could be related to the distribution and pools of carbon (C) and nitrogen (N) along the profile of two Mediterranean mixed forests of stone pine (Pinus pinea L.) and holm oak (Quercus ilex L.).

Methods

A low-invaded (LIN) and a high-invaded (HIN) mixed forest were studied. We assessed: N concentration in green and in senescent leaves; C and N pools along the soil profile; seasonal changes of soluble C and N fractions, and microbial activity.

Results

Compared to coexisting holm oak and stone pine, black locust had higher N content in green and in senescent leaves. In the mineral soil: N stocks were similar in LIN and HIN; water soluble C and microbial activity, were lower in HIN compared to LIN; water soluble N showed seasonal changes consistent with tree growth activity in both HIN and LIN. In the organic layer of HIN, C and N stocks were about twofold larger than expected on the basis of stand density.

Conclusion

Black locust increased C and N stocks in the upper organic layers that are more vulnerable to disturbance. However, it did not increase N stocks in the mineral soil.  相似文献   

7.
Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.  相似文献   

8.
To identify why tree growth differs by afforestation type is a matter of prime concern in forestry. A study was conducted to determine why oriental arborvitae (Platycladus orientalis) grows better in the presence of black locust (Robinia pseudoacacia) than in monoculture. Different types of stands (i.e., monocultures and mixture of black locust and oriental arborvitae, and native grassland as a control) were selected in the Loess Plateau, China. The height and diameter at breast height of each tree species were measured, and soil, shoot, and root samples were sampled. The arbuscular mycorrhizal (AM) attributes, shoot and root nutrient status, height and diameter of black locust were not influenced by the presence of oriental arborvitae. For oriental arborvitae, however, growing in mixture increased height and diameter and reduced shoot Mn, Ca, and Mg contents, AM fungal spore density, and colonization rate. Major changes in soil properties also occurred, primarily in soil water, NO3‐N, and available K levels and in soil enzyme activity. The increase in soil water, N, and K availability in the presence of black locust stimulated oriental arborvitae growth, and black locust in the mixed stand seems to suppress the development of AM symbiosis in oriental arborvitae roots, especially the production of AM fungal spores and vesicles, through improving soil water and N levels, thus freeing up carbon to fuel plant growth. Overall, the presence of black locust favored oriental arborvitae growth directly by improving soil water and fertility and indirectly by repressing AM symbiosis in oriental arborvitae roots.  相似文献   

9.
The introduced black locust (Robinia pseudoacacia) has become an invasive plant species in Europe. The introduction of alien plants such as the black locust may modify ecosystem composition and functioning. In response to the presence of a potential host plant, herbivores can adapt and shift to the consumption of the new host plant. In Eastern-Central Europe, the seed predator Bruchophagus robiniae (Hymenoptera: Eurytomidae) is an important consumer of black locust seeds which presumably shifted from its formerly host species to black locust. We tested the influence of host plant abundance on a seed predator – parasitoid community. We found that the seed predator B. robiniae was present in higher numbers in woodlots than in small patches of black locust. The density of the specialist parasitoid Mesopolobus sp. was lower in woodlots than in small patches, while the generalist parasitoid Eupelmus urozonos was evenly distributed between woodlots and small patches of black locust. We found that parasitoid species are influenced by the patch size of host plants, thus characteristics of introduced host plants can also manifest in higher trophic levels.  相似文献   

10.
Climate change can result in a slow disappearance of forests dominated by less drought-tolerant native European beech (Fagus sylvatica) and oak species (Quercus spp.) and further area expansion of more drought-tolerant non-native black locust (Robinia pseudoacacia) against those species in Hungary. We assumed that the shift in plant species composition was modified by selective ungulate browsing. Thus, we investigated which woody species are selected by browsing game. We have collected data on the species composition of the understory and the browsing impact on it in five different Hungarian even-aged forests between 2003 and 2005. Based on these investigations the non-native Robinia pseudoacacia living under more favourable climatic conditions was generally preferred (Jacobs’ selectivity index: D = 0.04 ± 0.77), while the native Fagus sylvatica and Quercus spp. (Q. petraea, Q. robur), both more vulnerable to increasing aridity, were avoided (D = ?0.37 ± 0.11; ?0.79 ± 0.56; ?0.9 ± 0.16; respectively) among target tree species. However, economically less or not relevant species, e.g. elderberry (Sambucus spp.), blackberry (Rubus spp.) or common dogwood (Cornus sanguinea) were the most preferred species (D = 0.01 ± 0.71; ?0.12 ± 0.58; ?0.2 ± 0.78, respectively). Our results imply that biodiversity conservation, i.e. maintaining or establishing a multi-species understory layer, can be a good solution to reduce the additional negative game impact on native target tree species suffering from drought. Due to preference for Robinia pseudoacacia selective browsing can decelerate the penetration of this species into native forest habitats. We have to consider the herbivorous pressure of ungulates and their feeding preferences in planning our future multifunctional forests in the light of climate change impacts.  相似文献   

11.
To investigate the influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate, we monitored litterfall, litter decomposition, and soil membrane phosphate in a R. pseudoacacia forest on Mt. Ilzasan, Seoul, Korea. R. pseudoacacia flower litter was 30–50% of total litter production in May and the flowers decomposed rapidly. More than 11% of R. pseudoacacia leaf litter decomposed from February to May, while that of Quercus spp. decomposed very little. Fast decomposition of R. pseudoacacia flower and leaf litter significantly increased membrane phosphate in the soil. The rapid nutrient-cycling of R. pseudoacacia through flower litterfall and rapid decomposition benefits the plant itself in the growing season when nutrients demand is increasing. Rapid nutrient-cycling might be a strategy that helps R. pseudoacacia to persist in poor soil environments.  相似文献   

12.
Eucalyptus tree species are widely used in Ethiopian plantations, but the impact of these plantations on the soil fungal communities is still unknown. We assessed the changes in diversity, species composition and ecological guilds of the soil fungal communities across tree ages of Eucalyptus grandis plantations by DNA metabarcoding of ITS2 amplicons. Changes in soil fungal species composition, diversity and ecological guilds were related to stand age but also to fertility changes. The relative abundance of saprotrophs and pathogens were negatively correlated with stand age, and positively with soil fertility. In contrast, the relative abundance and diversity of ectomycorrhizal species were higher in older, less fertile stands, including well-known cosmopolitan species but also species associated with Eucalyptus, such as Scleroderma albidum and Descomyces albellus. We show that soil fungal community changes are linked to progressive soil colonization by tree roots but are also related to soil fertility changes.  相似文献   

13.
Plants are connected to habitats by functional traits which are filtered by environmental gradients. Since tree species composition in the forest canopy can influence ecosystem processes by changing resource availability, litter accumulation, and soil nutrient content, we hypothesised that non-native invasive trees can establish new environmental filters on the understorey communities. In the hardwood floodplain forests in Northern Italy, the invasive trees Robinia pseudoacacia L. and Prunus serotina Ehrh. are the dominant canopy species. We used trait data assembled from databases and iterative RLQ analysis to identify a parsimonious set of functional traits responding to environmental variables (soil, light availability, disturbance, and stand structure) and the dominant native and invasive canopy species. Then, RLQ and fourth-corner analysis was conducted to investigate the joint structure between macro-environmental variables and species traits and functional groups were identified. The trait composition of the herb-layer was significantly related to the main environmental gradients and the presence of the invaders in the canopy showed significant relationships with several traits. In particular, the presence of P. serotina may mitigate or even erase the effect of disturbances, maintaining a stable forest microclimate and thus favouring ‘true’ forest species, while R. pseudoacacia may slow down forest succession and regeneration by establishing new stable associations with a graminoid-dominated understorey. The impact of the two invasive trees on herb layer composition appears to differ, indicating that different management and control strategies may be needed.  相似文献   

14.
We compared epiphytic lichen communities of native broadleaved and secondary black locust (Robinia pseudoacacia) forests to detect possible differences in community structure that could be indicative of biological homogenization enhanced by the replacement of native by black locust forests. The study was carried out in two areas of Italy with different bioclimatic conditions using a balanced stratified random sampling. Results reveal a different pattern of community structure between native and black locust forests across the two regions that may reflect a process of biological homogenization. In particular, lichen communities of black locust forests share several species between the two study regions. This pattern of floristic homogenization parallels with a functional homogenization related to the spread of highly competitive species. This research provides early evidence that the decrease of native forests associated with the spread of black locust is a mechanism triggering biological homogenization of the epiphytic lichen biota.  相似文献   

15.
A harmonious interspecies relationship is the key to the success of mixed afforestation. This study was conducted to assess the responses of afforestation species to their neighboring trees. We examined five types of stands—monocultures of Chinese pine (Pinus tabuliformis), black locust (Robinia pseudoacacia), sea‐buckthorn (Hippophae rhamnoides), and two mixtures (Chinese pine × black locust mixture and Chinese pine × sea‐buckthorn mixture)—in the Loess Plateau, northwestern China. The height and diameter at breast height of each tree species were measured, and rhizosphere soil, shoot, and root were sampled. In monocultures, black locust was taller than Chinese pine and sea‐buckthorn, while the height of Chinese pine and sea‐buckthorn was similar. In mixtures, Chinese pine grew better with sea‐buckthorn than alone as a result of modified soil properties and plant nutrition, but not with black locust. When Chinese pine was used as neighbors, it affected the level of arbuscular mycorrhizal (AM) colonization of black locust, soil properties and AM fungal spore density of black locust and sea‐buckthorn, but did not significantly affect their growth. Our results suggest that the reciprocal effects between tree species in mixture are not symmetric, and thus planning for efficient mixed afforestation requires knowledge of species‐specific growth rate, nutrient requirements, and species interactions.  相似文献   

16.
Investigations of soluble proteins by polyacrylamide gel electrophoresis of root extracts of black locust (Robinia pseudoacacia L.) were carried out with 41 trees from diverse habitats representing dominant-stem forms (R. p. var. rectissima Raber) and typical forms (R. pseudoacacia L.). Soluble protein patterns of dominantstem forms and typical trees did not show differences attributable to tree form. Heritability estimates (broad sense) were determined as 9·19% within location and 7·.5% among populations. A variance components model was constructed which showed the interaction between parental trees and location to be most significant in determining variation. Location variance was second in importance, with parental variance and experimental error of less significance. The data were analyzed by the moment of inertia. It is indicated that, based on protein similarity, the dominant-stem form is an ecological variant and should not be given varietal status.  相似文献   

17.
A collection of petrified wood from the Lower Pliocene Ogallala Formation in western Oklahoma was examined. All specimens appear to be of the same taxon and exhibit features of extant Robinia species. To date, four fossil wood species of Robinia have been described. The relationship of Robinioxylon zuriensis Falqui to Robinia is doubtful because of the lack of diagnostic critical features. The remaining three, Robinia alexanderi Webber, Robinia breweri Prakash, Barghoorn and Scott, and Robinioxylon zirkelii (Platen) Müller-Stoll and Mädel do show affinity to Robinia and all have been noted as structurally similar to R. pseudoacacia. The Oklahoma woods and these three fossil species show considerable overlap in quantitative features and are identical in qualitative features. Examination of different sections (and specimens) of extant Robinia pseudoacacia wood reveals quantitative and qualitative variation similar to that found amongst the petrified woods. Robinia alexanderi, Webber, R. breweri Prakash, Barghoorn and Scott, R. zirkelii (Platen) Müller-Stoll and Mädel, and the Oklahoma specimens are considered to be conspecific as the differences between these fossil wood species are no different from those accounted for by variation within a single living species, R. pseudoacacia.  相似文献   

18.
The gypsy moth is a generalist insect pest with an extremely wide host range. Adaptive responses of digestive enzymes are important for the successful utilization of plant hosts that differ in the contents and ratios of constituent nutrients and allelochemicals. In the present study, we examined the responses of α‐amylase, trypsin, and leucine aminopeptidase to two tree hosts (suitable oak, Quercus cerris, and unsuitable locust tree, Robinia pseudoacacia) in the fourth, fifth, and sixth instars of gypsy moth larvae originating from oak and locust tree forest populations (hereafter assigned as Quercus and Robinia populations, respectively). Gypsy moths from the Robinia forest had been adapting to this unsuitable host for more than 40 generations. To test for population‐level host plant specialization, we applied a two‐population × two‐host experimental design. We compared the levels, developmental patterns, and plasticities of the activities of enzymes. The locust tree diet increased enzyme activity in the fourth instar and reduced activity in advanced instars of the Quercus larvae in comparison to the oak diet. These larvae also exhibited opposite developmental trajectories on the two hosts, i.e. activity increased on the oak diet and decreased on the locust tree diet with the progress of instar. Larvae of the Robinia population were characterized by reduced plasticity of enzyme activity and its developmental trajectories. In addition, elevated trypsin activity in response to an unsuitable host was observed in all instar larvae of the Robinia population, which demonstrated that Robinia larvae had an improved digestive performance than did Quercus larvae.  相似文献   

19.
Black locust (Robinia pseudoacacia L.)—an invasive alien species in riparian forests—is becoming more prevalent in many rivers of eastern Japan. Riparian black locust forests are typically cut down to maintain river-flow capacity. However, such forests often reproduce rapidly by stump sprouting and root suckering and regenerate by germination. Thus, more effective riparian forest management approaches are required. To regulate the reproduction of black locust forests after clear-cutting, we examined the regrowth-inhibiting effects of glyphosate herbicide application to stumps, in accordance with current river management protocol (i.e., winter logging operation). Further, we investigated the concentrations of glyphosate leaching into the soil at a depth of 30 cm in a riparian area of the Tenryu River. Our results showed that glyphosate application to stumps completely inhibited stump sprouting but not root suckering or seedling germination. The glyphosate concentration leaching into the soil reached a maximum (2.6 ± 0.7 mg kg?1, mean ± standard error) on day 1 after the application, and subsequently declined to below the detection limit on day 2. Thus, the rapid degradation of glyphosate was confirmed, despite the fact that the herbicide leached into the soil after application to the stumps. The glyphosate application has limited effectiveness against root suckering and germination of riparian black locust forests after clear-cutting in winter, in accordance with the current river management protocol.  相似文献   

20.
The landscapes colonized by invasive earthworms in the eastern U.S. are often patchworks of forest stands in various stages of successional development. We established six field sites in tulip poplar dominated forests in the Smithsonian Environmental Research Center in Edgewater, MD, that span mid (50–70 years-three plots) and late (120–150 years-three plots) successional stages where younger sites had greater earthworm density and biomass than older sites and were dominated by non-native lumbricid species. In particular Lumbricus rubellus, a litter-feeding species, was abundant in mid successional forests. Here, we separated particulate organic matter (POM) from the bulk soil by a combination of size and density fractionation and found that patterns in soil POM chemistry were similar to those found previously during litter decay: in younger forests with high abundance of earthworms, organic carbon normalized cutin- and suberin-derived substituted fatty acid (SFA) concentration was lower and lignin-derived phenols greater than in older forests where earthworms were less abundant. The chemistry of the dominant litter from mid versus late successional tree species did not fully explain the differences in POM chemistry between age classes. Instead, the differences in leaf body versus petiole and leaf versus root chemistry were the dominant drivers of POM chemistry in mid versus late successional stands, although aspects of stand age and tree species also impacted POM chemistry. Our results indicate that preferential ingestion of leaf body tissue by earthworms and the subsequent shifts in sources of plant biopolymers in soil influenced POM chemistry in mid successional forests. These results indicate that invasive earthworm activity in North American forests contributes to a shift in the aromatic and aliphatic composition of POM and thus potentially influences carbon stabilization in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号