首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΔG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΔG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.  相似文献   

2.
Yin  Xiuchen  Zhang  Shumei  Gao  Youlan  Li  Jinzhe  Tan  Shuyi  Liu  Hongyu  Wu  Xiaoying  Chen  Yuhuan  Liu  Ming  Zhang  Yun 《Virology journal》2012,9(1):1-7

Background

Ebola viruses (EBOVs) cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs).

Results

Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire) GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV), GPCAGDFAF and LYDRLASTV (Zaire EBOV) could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma.

Conclusion

Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.  相似文献   

3.
Cathepsins B and L contribute to Ebola virus (EBOV) entry into Vero cells and mouse embryonic fibroblasts. However, the role of cathepsins in EBOV‐infection of human dendritic cells (DCs), important targets of infection in vivo, remains undefined. Here, EBOV‐like particles containing a β‐lactamase–VP40 fusion reporter and Ebola virus were used to demonstrate the cathepsin dependence of EBOV entry into human monocyte‐derived DCs. However, while DC infection is blocked by cathepsin B inhibitor, it is insensitive to cathepsin L inhibitor. Furthermore, DCs pre‐treated for 48 h with TNFα were generally less susceptible to entry and infection by EBOV. This decrease in infection was associated with a decrease in cathepsin B activity. Thus, cathepsin L plays a minimal, if any, role in EBOV infection in human DCs. The inflammatory cytokine TNFα modulates cathepsin B activity and affects EBOV entry into and infection of human DCs.  相似文献   

4.
Ebola virus: unravelling pathogenesis to combat a deadly disease   总被引:1,自引:0,他引:1  
Ebola virus (EBOV) causes severe haemorrhagic fever leading to up to 90% lethality. Increasingly frequent outbreaks and the placement of EBOV in the category A list of potential biothreat agents have boosted interest in this virus. Furthermore, development of new technologies (e.g. reverse genetics systems) and extensive studies on Ebola haemorrhagic fever (EHF) in animal models have substantially expanded the knowledge on the pathogenic mechanisms that underlie this disease. Two major factors in EBOV pathogenesis are the impairment of the immune response and vascular dysfunction. Here, we attempt to summarize the current knowledge on EBOV pathogenesis focusing on these two factors and on recent progress in the development of vaccines and potential therapeutics.  相似文献   

5.
Ebola virus (EBOV) is one of the most virulent pathogens that causes hemorrhagic fever and displays high mortality rates and low prognosis rates in both humans and nonhuman primates. The post-exposure antibody therapies to prevent EBOV infection are considered effective as of yet. However, owing to the poor thermal stability of mammalian antibodies, their application in the tropics has remained limited. Therefore, a thermostable therapeutic antibody against EBOV was developed modelled on the poultry(chicken) immunoglobulin Y (IgY). The IgY antibodies retaining their neutralising activity at 25°C for one year, displayed excellent thermal stability, opposed to conventional polyclonal antibodies (pAbs) or monoclonal antibodies (mAbs). Laying hens were immunised with a variety of EBOV vaccine candidates and it was confirmed that VSVΔG/EBOVGP encoding the EBOV glycoprotein could induce high titer neutralising antibodies against EBOV. The therapeutic efficacy of immune IgY antibodies in vivo was evaluated in the newborn Balb/c mice who have been challenged with the VSVΔG/EBOVGP model. Mice that have been challenged with a lethal dose of the pseudovirus were treated 2 or 24 h post-infection with different doses of anti-EBOV IgY. The group receiving a high dose of 106 NAU/kg (neutralising antibody units/kilogram) showed complete protection with no symptoms of a disease, while the low-dose group was only partially protected. Conversely, all mice receiving naive IgY died within 10 days. In conclusion, the anti-EBOV IgY exhibits excellent thermostability and protective efficacy. Anti-EBOV IgY shows a lot of promise in entering the realm of efficient Ebola virus treatment regimens.  相似文献   

6.
7.
The Ebola virus (EBOV) can cause severe infections in humans, leading to a fatal outcome in a high percentage of cases. Neutralizing antibodies against the EBOV surface glycoprotein (GP) can prevent infections, demonstrating a straightforward way for an efficient vaccination strategy. Meanwhile, many different anti‐EBOV antibodies have been identified, whereas the exact binding epitopes are often unknown. Here, the analysis of serum samples from an EBOV vaccine trial with the recombinant vesicular stomatitis virus‐Zaire ebolavirus (rVSV‐ZEBOV) and an Ebola virus disease survivor, using high‐density peptide arrays, is presented. In this proof‐of‐principle study, distinct IgG and IgM antibodies binding to different epitopes of EBOV GP is detected: By mapping the whole GP as overlapping peptide fragments, new epitopes and confirmed epitopes from the literature are found. Furthermore, the highly selective binding epitope of a neutralizing monoclonal anti‐EBOV GP antibody could be validated. This shows that peptide arrays can be a valuable tool to study the humoral immune response to vaccines in patients and to support Ebola vaccine development.  相似文献   

8.
Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein. A single intramuscular injection of the EBOV or MARV vaccine elicited completely protective immune responses in nonhuman primates against lethal EBOV or MARV challenges. Notably, vaccine vector shedding was not detectable in the monkeys and none of the animals developed fever or other symptoms of illness associated with vaccination. The EBOV vaccine induced humoral and apparent cellular immune responses in all vaccinated monkeys, whereas the MARV vaccine induced a stronger humoral than cellular immune response. No evidence of EBOV or MARV replication was detected in any of the protected animals after challenge. Our data suggest that these vaccine candidates are safe and highly efficacious in a relevant animal model.  相似文献   

9.

Background

Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission.

Results

To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage.

Conclusions

Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV.  相似文献   

10.
In support of the response to the 2013–2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks.  相似文献   

11.
Ebola virus (EBOV) is a zoonotic pathogen, the infection often results in severe, potentially fatal, systematic disease in human and nonhuman primates. VP35, an essential viral RNA-dependent RNA polymerase cofactor, is indispensable for Ebola viral replication and host innate immune escape. In this study, VP35 was demonstrated to be phosphorylated at Serine/Threonine by immunoblotting, and the major phosphorylation sites was S187, S205, T206, S208 and S317 as revealed by LC-MS/MS. By an EBOV minigenomic system, EBOV minigenome replication was shown to be significantly inhibited by the phosphorylation-defective mutant, VP35 S187A, but was potentiated by the phosphorylation mimic mutant VP35 S187D. Together, our findings demonstrate that EBOV VP35 is phosphorylated on multiple residues in host cells, especially on S187, which may contribute to efficient viral genomic replication and viral proliferation.  相似文献   

12.
Ebola virus (EBOV) causes highly lethal hemorrhagic fever that leads to death in up to 90% of infected humans. Like many other infections, EBOV induces massive lymphocyte apoptosis, which is thought to prevent the development of a functional adaptive immune response. In a lethal mouse model of EBOV infection, we show that there is an increase in expression of the activation/maturation marker CD44 in CD4(+) and CD8(+) T cells late in infection, preceding a dramatic rebound of lymphocyte numbers in the blood. Furthermore, we observed both lymphoblasts and apoptotic lymphocytes in spleen late in infection, suggesting that there is lymphocyte activation despite substantial bystander apoptosis. To test whether these activated lymphocytes were functional, we performed adoptive transfer studies. Whole splenocytes from moribund day 7 EBOV-infected animals protected naive animals from EBOV, but not Marburgvirus, challenge. In addition, we observed EBOV-specific CD8(+) T cell IFN-gamma responses in moribund day 7 EBOV-infected mice, and adoptive transfer of CD8(+) T cells alone from day 7 mice could confer protection to EBOV-challenged naive mice. Furthermore, CD8(+) cells from day 7, but not day 0, mice proliferated after transfer to infected recipients. Therefore, despite significant lymphocyte apoptosis, a functional and specific, albeit insufficient, adaptive immune response is made in lethal EBOV infection and is protective upon transfer to naive infected recipients. These findings should cause a change in the current view of the 'impaired' immune response to EBOV challenge and may help spark new therapeutic strategies to control lethal filovirus disease.  相似文献   

13.
In addition to its surface glycoprotein (GP1,2), Ebola virus (EBOV) directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. The generation of secreted antigens has been studied in several viruses and suggested as a mechanism of host immune evasion through absorption of antibodies and interference with antibody-mediated clearance. However such a role has not been conclusively determined for the Ebola virus sGP. In this study, we immunized mice with DNA constructs expressing GP1,2 and/or sGP, and demonstrate that sGP can efficiently compete for anti-GP12 antibodies, but only from mice that have been immunized by sGP. We term this phenomenon “antigenic subversion”, and propose a model whereby sGP redirects the host antibody response to focus on epitopes which it shares with membrane-bound GP1,2, thereby allowing it to absorb anti-GP1,2 antibodies. Unexpectedly, we found that sGP can also subvert a previously immunized host''s anti-GP1,2 response resulting in strong cross-reactivity with sGP. This finding is particularly relevant to EBOV vaccinology since it underscores the importance of eliciting robust immunity that is sufficient to rapidly clear an infection before antigenic subversion can occur. Antigenic subversion represents a novel virus escape strategy that likely helps EBOV evade host immunity, and may represent an important obstacle to EBOV vaccine design.  相似文献   

14.
The creation of licensed medical countermeasures against Select Agents such as Ebola virus (EBOV) is critically dependent on the use of standardized reagents, assays, and animal models. We performed full genome reconstruction, population genomics, contaminant analysis, and characterization of the glycoprotein gene editing site of historical United States Army Medical Research Institute of Infectious Diseases (USAMRIID) nonhuman-primate challenge stock Ebola virus Kikwit “R4368” and its 2014 replacement “R4415.” We also provide characterization of the master stock used to create “R4415.” The obtained data are essential to understanding the quality of the seed stock reagents used in pivotal animal studies that have been used to inform medical countermeasure development. Furthermore, these data might add to the understanding of the influence of EBOV variant populations on pathogenesis and disease outcome and inform attempts to avoid the evolution of EBOV escape mutants in response to current therapeutics. Finally, as the primary challenge stocks have changed over time, these data will provide a baseline for understanding and correlating past and future animal study results.  相似文献   

15.
The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014–2015 West African outbreak variant (Makona).  相似文献   

16.
Ebola virus(EBOV),a member of the filovirus family,is an enveloped negative-sense RNA virus that causes lethal infections in humans and primates.Recently,more than 1000 people have been killed by the Ebola virus disease in Africa,yet no specific treatment or diagnostic tests for EBOV are available.In this study,we identified two putative viral microRNA precursors(pre-miRNAs)and three putative mature microRNAs(miRNAs)derived from the EBOV genome.The production of the EBOV miRNAs was further validated in HEK293T cells transfected with a pcDNA6.2-GW/EmGFP-EBOV-pre-miRNA plasmid,indicating that EBOV miRNAs can be produced through the cellular miRNA processing machinery.We also predicted the potential target genes of these EBOV miRNAs and their possible biological functions.Overall,this study reports for the first time that EBOV may produce miRNAs,which could serve as non-invasive biomarkers for the diagnosis and prognosis of EBOV infection and as therapeutic targets for Ebola viral infection treatment.  相似文献   

17.
BackgroundThe recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples.ConclusionIn summary, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.  相似文献   

18.
Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and suppressor of cytokine signaling 1 (SOCS1) in a human monocytic cell line and in HEK293-TLR4/MD2 cells stably expressing the TLR4/MD2 complex. Ebola virus GP was found to interact with TLR4 by immunoprecipitation/Western blot analyses, and Ebola virus GP on VLPs was able to stimulate expression of NF-κB in a TLR4-dependent manner. Interestingly, we found that budding of Ebola virus VLPs was more pronounced in TLR4-stimulated cells than in unstimulated control cells. In sum, these findings identify the host innate immune protein TLR4 as a sensor for Ebola virus GP which may play an important role in the immunopathogenesis of Ebola virus infection.Ebola virus and Marburg virus comprise the Filoviridae family and represent important human pathogens and potential agents of bioterrorism. Currently there are no approved vaccines or specific treatments available to prevent or treat filovirus infections. The filoviruses are the cause of severe hemorrhagic disease in humans (7). Ebola virus initially targets monocytes/macrophages and dendritic cells (DCs), which can lead to the release of proinflammatory cytokines and chemokines (3, 7). A better understanding of the physical and functional interactions between Ebola virus proteins and cellular factors regulating the host innate immune response may reveal novel insights into the pathogenesis of Ebola virus and offer new strategies to inhibit Ebola virus replication.The VP40 matrix protein of Ebola virus is a key structural protein critical for budding virus-like particles (VLPs) and virion egress. Interactions between late budding domains of VP40 and specific host proteins facilitate efficient release of VLPs and infectious virus. Viral proteins other than VP40 also contribute to efficient budding of VLPs. Ebola virus glycoprotein (GP), when coexpressed with VP40, is incorporated into budding VLPs and enhances VLP egress (15), possibly by antagonizing the function of host proteins (12).Several studies have reported the induction of an innate immune response following infection or stimulation of macrophages/monocytes and DCs with Ebola virus or VLPs, respectively (2, 31). For example, incubation of Ebola virus VP40+GP VLPs with DCs led to the induction of interleukin-6 (IL-6), IL-8, NF-κB and ERK1/2 (18, 31). The triggering mechanism by which Ebola virus VLPs stimulate cytokine production is unknown. Here, we present evidence that Ebola virus VLPs stimulate induction of proinflammatory cytokines as well as SOCS1 (a ubiquitin ligase and negative feedback regulator of cytokine production) by interacting with host Toll-like receptor 4 (TLR4). Importantly, Ebola virus VP40+GP VLPs, but not VP40 VLPs, induced cytokine and SOCS1 expression in a TLR4/MD2 dependent manner both in a human monocytic cell line (THP-1 cells) and in 293T cells expressing a functional TLR4/MD2 receptor. These results indicate that the stimulation of TLR4 by Ebola virus envelope GP results in an innate host response, induction of SOCS1 protein, and potential enhancement of virus egress.  相似文献   

19.
Six ebolavirus species are reported to date, including human pathogens Bundibugyo virus (BDBV), Ebola virus (EBOV), Sudan virus (SUDV), and Taï Forest virus (TAFV); non-human pathogen Reston virus (RESTV); and the plausible Bombali virus (BOMV). Since there are differences in the disease severity caused by different species, species identification and viral burden quantification are critical for treating infected patients timely and effectively. Here we developed an immunoprecipitation-coupled mass spectrometry (IP-MS) assay for VP40 antigen detection and quantification. We carefully selected two regions of VP40, designated as peptide 8 and peptide12 from the protein sequence that showed minor variations among Ebolavirus species through MS analysis of tryptic peptides and antigenicity prediction based on available bioinformatic tools, and generated high-quality capture antibodies pan-specific for these variant peptides. We applied this assay to human plasma spiked with recombinant VP40 protein from EBOV, SUDV, and BDBV and virus-like particles (VLP), as well as EBOV infected NHP plasma. Sequence substitutions between EBOV and SUDV, the two species with highest lethality, produced affinity variations of 2.6-fold for p8 and 19-fold for p12. The proposed IP-MS assay differentiates four of the six known EBV species in one assay, through a combination of p8 and p12 data. The IP-MS assay limit of detection (LOD) using multiple reaction monitoring (MRM) as signal readout was determined to be 28 ng/mL and 7 ng/mL for EBOV and SUDV respectively, equivalent to ~1.625–6.5×105 Geq/mL, and comparable to the LOD of lateral flow immunoassays currently used for Ebola surveillance. The two peptides of the IP-MS assay were also identified by their tandem MS spectra using a miniature MALDI-TOF MS instrument, greatly increasing the feasibility of high specificity assay in a decentralized laboratory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号