首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
SAMHD1 is a newly identified restriction factor that targets lentiviruses in myeloid cells and is countered by the SIVSM/HIV-2 Vpx protein. By analyzing a large panel of Vpx mutants, we identify several residues throughout the 3-helix bundle predicted for Vpx that impair both its functionality and its ability to degrade SAMHD1. We determine that SAMHD1 is a strictly non-shuttling nuclear protein and that as expected WT Vpx localizes with it in the nucleus. However, we also identify a functional Vpx mutant with predominant cytoplasmic distribution that colocalizes with SAMHD1 in this location, suggesting that Vpx may also retain SAMHD1 in the cell cytoplasm, prior to its entry into the nucleus. Several mutations in Vpx were shown to affect the stability of Vpx, as well as Vpx:Vpx interactions. However, no strict correlation was observed between these parameters and the functionality of Vpx, implying that neither properties is absolutely required for this function and indicating that even unstable Vpx mutants may be very efficient in inducing SAMHD1 degradation. Overall, our analysis identifies several Vpx residues required for SAMHD1 degradation and points to a very efficient and plastic mechanism through which Vpx depletes this restriction factor.  相似文献   

4.
For nearly 20 years, the principal biological function of the HIV-2/SIV Vpx gene has been thought to be required for optimal virus replication in myeloid cells. Mechanistically, this Vpx activity was recently reported to involve the degradation of Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1) in this cell lineage. Here we show that when macaques were inoculated with either the T cell tropic SIVmac239 or the macrophage tropic SIVmac316 carrying a Vpx point mutation that abrogates the recruitment of DCAF1 and the ensuing degradation of endogenous SAMHD1 in cultured CD4+ T cells, virus acquisition, progeny virion production in memory CD4+ T cells during acute infection, and the maintenance of set-point viremia were greatly attenuated. Revertant viruses emerging in two animals exhibited an augmented replication phenotype in memory CD4+ T lymphocytes both in vitro and in vivo, which was associated with reduced levels of endogenous SAMHD1. These results indicate that a critical role of Vpx in vivo is to promote the degradation of SAMHD1 in memory CD4+ T lymphocytes, thereby generating high levels of plasma viremia and the induction of immunodeficiency.  相似文献   

5.
6.
Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.  相似文献   

7.
8.
9.
The SAMHD1 protein is an HIV-1 restriction factor that is targeted by the HIV-2 accessory protein Vpx in myeloid lineage cells. Mutations in the SAMHD1 gene cause Aicardi-Goutières syndrome, a genetic disease that mimics congenital viral infection. To determine the physiological function of the SAMHD1 protein, the SAMHD1 gene was cloned, recombinant protein was produced, and the catalytic activity of the purified enzyme was identified. We show that SAMHD1 contains a dGTP-regulated deoxynucleotide triphosphohydrolase. We propose that Vpx targets SAMHD1 for degradation in a viral strategy to control cellular deoxynucleotide levels for efficient replication.  相似文献   

10.
Functional importance of Vpx protein of human immunodeficiency virus type 2 was evaluated in various types of cells. In 8 lymphocytic or monocytic cell lines tested, vpx mutant virus grew as well as wild-type virus. Only in primary peripheral blood mononuclear cell cultures, severely retarded growth of mutant virus was observed. No replication of vpx-minus virus was detected in primary macrophage cells. A highly sensitive single-round replication assay system was used to determine the defective replication phase in primary mononuclear cells of vpx mutant virus. In all cell lines examined, vpx mutant displayed no abnormality. In contrast, the vpx mutant was demonstrated to be defective at an early stage of the infection cycle in primary cell cultures. No evidence of a replication-defect at a late phase in primary cells of the vpx mutant was obtained by a transfection-coculture method. These results indicate that the virion-associated Vpx protein is essential for early viral replication process in natural target cells such as primary macrophages.  相似文献   

11.
12.
13.
Zhang C  de Silva S  Wang JH  Wu L 《PloS one》2012,7(5):e37477
Cross-species transmission and adaptation of simian immunodeficiency viruses (SIVs) to humans have given rise to human immunodeficiency viruses (HIVs). HIV type 1 (HIV-1) and type 2 (HIV-2) were derived from SIVs that infected chimpanzee (SIVcpz) and sooty mangabey (SIVsm), respectively. The HIV-1 restriction factor SAMHD1 inhibits HIV-1 infection in human myeloid cells and can be counteracted by the Vpx protein of HIV-2 and the SIVsm lineage. However, HIV-1 and its ancestor SIVcpz do not encode a Vpx protein and HIV-1 has not evolved a mechanism to overcome SAMHD1-mediated restriction. Here we show that the co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in SIVcpz and HIV-1. We found evidence for positive selection of SAMHD1 in orangutan, gibbon, rhesus macaque, and marmoset, but not in human, chimpanzee and gorilla that are natural hosts of Vpx-negative HIV-1, SIVcpz and SIVgor, respectively, indicating that vpx drives the evolution of primate SAMHD1. Ancestral host state reconstruction and temporal dynamic analyses suggest that the most recent common ancestor of SIVrcm, SIVmnd, SIVcpz, SIVgor and HIV-1 was a SIV that had a vpx gene; however, the vpx gene of SIVcpz was lost approximately 3643 to 2969 years ago during the infection of chimpanzees. Thus, HIV-1 could not inherit the lost vpx gene from its ancestor SIVcpz. The lack of Vpx in HIV-1 results in restricted infection in myeloid cells that are important for antiviral immunity, which could contribute to the AIDS pandemic by escaping the immune responses.  相似文献   

14.
Viruses have evolved means to manipulate the host’s ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle regulation. CRL4DCAF1 specificity modulation by Vpx and Vpr from certain simian immunodeficiency viruses (SIV) leads to recruitment, poly-ubiquitylation and subsequent proteasomal degradation of the host restriction factor SAMHD1, resulting in enhanced virus replication in differentiated cells. To unravel the mechanism of SIV Vpr-induced SAMHD1 ubiquitylation, we conducted integrative biochemical and structural analyses of the Vpr protein from SIVs infecting Cercopithecus cephus (SIVmus). X-ray crystallography reveals commonalities between SIVmus Vpr and other members of the Vpx/Vpr family with regard to DCAF1 interaction, while cryo-electron microscopy and cross-linking mass spectrometry highlight a divergent molecular mechanism of SAMHD1 recruitment. In addition, these studies demonstrate how SIVmus Vpr exploits the dynamic architecture of the multi-subunit CRL4DCAF1 assembly to optimise SAMHD1 ubiquitylation. Together, the present work provides detailed molecular insight into variability and species-specificity of the evolutionary arms race between host SAMHD1 restriction and lentiviral counteraction through Vpx/Vpr proteins.  相似文献   

15.
HIV‐2 and closely related SIV Vpx proteins are essential for viral replication in macrophages and dendritic cells. Vpx hijacks DCAF1–DDB1–Cul4 E3 ubiquitin ligase to promote viral replication. DCAF1 is essential for cell proliferation and embryonic development and is responsible for the polyubiquitination of poorly defined cellular proteins. How substrate receptors recruit the DCAF1‐containing E3 ubiquitin ligase to induce protein degradation is still poorly understood. Here we identify a highly conserved motif (Wx4Φx2Φx3AΦxH) that is present in diverse Vpx and Vpr proteins of primate lentiviruses. We demonstrate that the Wx4Φx2Φx3AΦxH motif in SIVmac Vpx is required for both the Vpx–DCAF1 interaction and/or Vpx‐mediated degradation of SAMHD1. DCAF1‐binding defective Vpx mutants also have impaired ability to promote SIVΔVpx virus infection of myeloid cells. Critical amino acids in the Wx4Φx2Φx3AΦxH motif of SIV Vpx that are important for DCAF1 interaction maintained the ability to bind SAMHD1, indicating that the DCAF1 and SAMHD1 interactions involve distinctive interfaces in Vpx. Surprisingly, VpxW24A mutant proteins that were still capable of binding DCAF1 and SAMHD1 lost the ability to induce SAMHD1 degradation, suggesting that Vpx is not a simple linker between the DCAF1–DDB1–Cul4 E3 ubiquitin ligase and its substrate, SAMHD1.VpxW24A maintained the ability to accumulate in the nucleus despite the fact that nuclear, but not cytoplasmic, mutant forms of SAMHD1 were more sensitive to Vpx‐mediated degradation. The Wx4Φx2Φx3AΦxH motif in HIV‐1 Vpr is also required for the Vpr–DCAF1 interaction and Vpr‐induced G2 cell cycle arrest. Thus, our data reveal previously unrecognized functional interactions involved in the assembly of virally hijacked DCAF1–DDB1‐based E3 ubiquitin ligase complex.  相似文献   

16.
17.
18.
Human myeloid-lineage cells are refractory to HIV-1 infection. The Vpx proteins from HIV-2 and sooty mangabey SIV render these cells permissive to HIV-1 infection through proteasomal degradation of a putative restriction factor. Two recent studies discovered the cellular protein SAMHD1 to be this restriction factor, demonstrating that Vpx induces proteasomal degradation of SAMHD1 and enhances HIV-1 infection in myeloid-lineage cells. SAMHD1 functions as a myeloid-cell-specific HIV-1 restriction factor by inhibiting viral DNA synthesis. Here we discuss the implications of these findings in delineating the mechanisms of HIV-1 restriction in myeloid-lineage cells and the potential role of Vpx in lentiviral pathogenesis.  相似文献   

19.
20.
Two cellular factors are currently known to modulate lentiviral infection specifically in myeloid cells: SAMHD1 and APOBEC3A (A3A). SAMHD1 is a deoxynucleoside triphosphohydrolase that interferes with viral infection mostly by limiting the intracellular concentrations of dNTPs, while A3A is a cytidine deaminase that has been described to edit incoming vDNA. The restrictive phenotype of myeloid cells can be alleviated through the direct degradation of SAMHD1 by the HIV-2/SIVSM Vpx protein or else, at least in the case of HIV-1, by the exogenous supplementation of nucleosides that artificially overcome the catabolic activity of SAMHD1 on dNTPs. Here, we have used Vpx and dNs to explore the relationship existing between vDNA cytidine deamination and SAMHD1 during HIV-1 or SIVMAC infection of primary dendritic cells. Our results reveal an interesting inverse correlation between conditions that promote efficient infection of DCs and the extent of vDNA editing that may reflect the different susceptibility of vDNA to cytoplasmic effectors during the infection of myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号