首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TNF displays pathogenic activities in many autoimmune disorders. However, anti-TNF therapy in multiple sclerosis patients failed because of poorly understood reasons. We used a panel of gene-targeted mice that allowed cell-type specific ablation of TNF to uncover pathogenic and protective contributions of this cytokine during autoimmune disease of the CNS. T cells and myeloid cells were found to be critical cellular sources of TNF during experimental autoimmune encephalomyelitis (EAE). TNF produced by myeloid cells accelerated the onset of disease by regulation of chemokine expression in the CNS, driving the recruitment of inflammatory cells into the target organ. TNF produced by T cells exacerbated the damage to the CNS during EAE by regulating infiltration of inflammatory myeloid cells into the CNS. In secondary lymphoid organs, TNF expressed by myeloid cells and T cells acted in synergy to dampen IL-12p40 and IL-6 production by APCs, subsequently inhibiting the development of encephalitogenic T cell responses of Th1 and Th17 types. This dual role of TNF during EAE (protective in lymphoid organs and pathogenic in CNS) suggests that global TNF blockade might be inefficient in multiple sclerosis patients because augmented autoreactive T cell development in lymphoid tissues might overwhelm the beneficial effects resulting from TNF inhibition in the CNS.  相似文献   

2.
Regulatory roles and molecular signaling of TNF family members in osteoclasts   总被引:12,自引:0,他引:12  
Feng X 《Gene》2005,350(1):1-13
The tumor necrosis factor (TNF) family has been one of the most intensively studied families of proteins in the past two decades. The TNF family constitutes 19 members that mediate diverse biological functions in a variety of cellular systems. The TNF family members regulate cellular functions through binding to membrane-bound receptors belonging to the TNF receptor (TNFR) family. Members of the TNFR family lack intrinsic kinase activity and thus they initiate signaling by interacting intracellular signaling molecules such as TNFR associated factor (TRAF), TNFR associated death domain (TRADD) and Fas-associated death domain (FADD). In bone metabolism, it has been shown that numerous TNF family members including receptor activator of nuclear factor kappaB ligand (RANKL), TNF-alpha, Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) play pivotal roles in the differentiation, function, survival and/or apoptosis of osteoclasts, the principal bone-resorbing cells. These TNF family members not only regulate physiological bone remodeling but they are also implicated in the pathogenesis of various bone diseases such as osteoporosis and bone loss in inflammatory conditions. This review will focus on our current understanding of the regulatory roles and molecular signaling of these TNF family members in osteoclasts.  相似文献   

3.
It was realized in the 1990s that some membrane proteins such as TNFα, both TNF receptors, ligands of the EGF-R and the Interleukin-6 receptor are proteolytically cleaved and are shed from the cell membrane as soluble proteins. The major responsible protease is a metalloprotease named ADAM17. So far, close to 100 substrates, including cytokines, cytokine receptors, chemokines and adhesion molecules of ADAM17 are known. Therefore, ADAM17 orchestrates many different signaling pathways and is a central signaling hub in inflammation and carcinogenesis. ADAM17 plays an important role in the biology of Interleukin-6 (IL-6) since the generation of the soluble Interleukin-6 receptor (sIL-6R) is needed for trans-signaling, which has been identified as the pro-inflammatory activity of this cytokine. In contrast, Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is mostly regenerative and protective. Probably due to its broad substrate spectrum, ADAM17 is essential for life and most of the few human individuals identified with ADAM17 gene defects died at young age. Although the potential of ADAM17 as a therapeutic target has been recognized, specific blockade of ADAM17 is not trivial since the metalloprotease domain of ADAM17 shares high structural homology with other proteases, in particular matrix metalloproteases. Here, the critical functions of ADAM17 in IL-6, TNFα and EGF-R pathways and strategies of therapeutic interventions are discussed.  相似文献   

4.
TNF receptor subtype signalling: differences and cellular consequences   总被引:20,自引:0,他引:20  
  相似文献   

5.
Molecular mechanism of TNF signaling and beyond   总被引:17,自引:0,他引:17  
Liu ZG 《Cell research》2005,15(1):24-27
  相似文献   

6.
The heat shock protein 90 (Hsp-90) inhibitor, geldanamycin, and the proteasome inhibitor, MG-132, both inhibited tumor necrosis factor receptor 1 (TNF-R1)- but not TRAIL-induced apoptosis in Kym-1 cells, suggesting that TNF-R1-induced cell death is dependent on NF-kappaB activation in this model. Triggering of TNF-R1 by agonistic antibodies led to cell-type specific induction of endogenous TNF and apoptosis, the latter of which was abrogated by neutralizing TNF specific antibodies. TNF-R1-stimulated cells expressed TNF mainly in a cell-associated form, suggesting that the endogenously produced TNF act in its membrane-bound form. Geldanamycin failed to inhibit apoptosis induction by a combination of agonistic TNF-R1- and TNF-R2-specific antibodies, indicating that both TNF receptors co-operate in TNF-R1-triggered apoptosis in Kym-1 cells. Thus, TNF-R1 stimulation can elicit a strong and rapid apoptotic response via induction of membrane TNF and subsequent cooperation of TNF-R1 and TNF-R2. Moreover, we give evidence that this mechanism circumvents the need of the prolonged presence of exogenous soluble TNF for TNF-R1-mediated apoptosis induction.  相似文献   

7.
The TNF signaling pathway is a valuable target in the therapy of autoimmune diseases, and anti-TNF drugs are successfully used to treat diseases such as rheumatoid arthritis, Crohn's disease and psoriasis. By their ability to interfere with inflammatory processes at multiple levels, these TNF blockers have become invaluable tools to inhibit the inflammation induced damage and allow recovery of the affected tissues. Unfortunately this therapy has some drawbacks, including increased risk of infection and malignancy, and remarkably, the onset of new auto-immune diseases. Some of these effects are caused by the unwanted abrogation of beneficial TNF signaling. More specific targeting of the pathological TNF-induced signaling might lead to broader applicability and improved safety. Specificity might be increased by inhibiting the soluble TNF/TNFR1 axis while leaving the often beneficial transmembrane TNF/TNFR2 signaling untouched. This approach looks promising because it inhibits the pathological effects of TNF and reduces the side effects, and it opens the way for the treatment of other diseases in which TNFR2 inhibition is detrimental. In this review we give an overview of in vivo mouse studies of TNF mediated pathologies demonstrating that the blockade or genetic deletion of sTNF or TNFR1 is preferable over total TNF blockade.  相似文献   

8.
Cerebral ischemia induces a rapid and dramatic up-regulation of tumor necrosis factor (TNF) protein and mRNA, but the cellular sources of TNF in the ischemic brain have not been defined. The diverse activities of TNF are mediated via ligand interaction with two distinct receptors, p55 and p75, which activate separate intracellular signal transduction pathways, leading to distinct biological effects. Since the effects of cerebral ischemia on TNF receptor (TNFR) expression are unknown, we examined the cellular localization and protein expression of TNF and its two receptors in the rat cerebral cortex in response to permanent middle cerebral artery (MCA) occlusion. The results indicate that focal. cerebral ischemia up-regulates expression of TNF and both TNFRs within the ischemic cortex. The most abundant type of TNF immunoreactivity (IR) was a punctate and filamentous pattern of transected cellular processes; however, cell bodies of neurons, astrocytes, and microglia, as well as infiltrating polymorphonuclear (PMN) leukocytes also showed TNF IR. Brain vasculature displayed TNF IR not only within endothelial cells but also in the perivascular space. MCA occlusion induced significant up-regulation of TNF receptors, with p55 IR appearing within 6 hr, significantly before the appearance of p75 IR at 24 hr after the onset of ischemia. Since p55 has been implicated in transducing cytotoxic signalling of TNF, these results support the proposed injurious role of excessive TNF produced during the acute response to cerebral ischemia.  相似文献   

9.
10.
Tumor necrosis factors(TNFs) are a group of cytokines that play critical roles in regulating a diverse range of physiological processes in vertebrates. TNFs function by activating a large number of structurally related receptors, leading to TNF mediated biological processes which are evolutionarily conserved. Fish have a much diversified TNF family, partly due to the whole genome duplication events which have occurred in this lineage, providing an excellent model to investigate the neo-and subfunctionalised properties of TNF superfamily. Fish possess most of the TNFs and receptors found in mammals and also some homologues exclusively present in fish. It seems that TNFSF4(OX40), TNFSF7(CD27) and TNFSF8(CD30) and their cognate receptors are absent in teleosts. It has been shown that fish viruses are able to produce TNFR homologues to establish infection by manipulating the host immune system. Understanding the roles of TNFSFs in fish immune defence and the pathogenesis of fish diseases will provide insights into the functions of TNFSFs from an evolutionary perspective and better strategies for improving fish health and welfare in aquaculture. This review summarises recent advances in the study of fish TNF biology and focuses on the molecular properties and immunological functions of the TNF and TNFR superfamily.  相似文献   

11.
Ikarugamycin (IK) is an antibiotic which has been reported to have a variety of functions, such as inhibition of clathrin-mediated endocytosis (CME), anti-tumor effects and regulation of the immune system. Whether IK influences cytokine production is poorly understood. We have investigated the relationship between IK and production of tumor necrosis factor-α (TNF). TNF plays a pivotal role in pathogenesis of many diseases. Although the dynamics of soluble TNF (sTNF) has been widely explored so far, the functions of the membrane form of TNF (mTNF) have not been fully elucidated. We demonstrated that IK increases the amount of mTNF and prolongs the duration of TNF expression. This effect is unrelated to the shedding activity of disintegrin and metalloproteinase domain-containing protein 17 (ADAM 17). Our results revealed that there is a mechanism to terminate inflammation at the cellular level which IK dysregulates. Furthermore, IK can be a tool to study TNF signaling due to its effect of increasing mTNF expression.  相似文献   

12.
Chen X  Oppenheim JJ 《FEBS letters》2011,585(23):3611-3618
Anti-TNF treatment is effective in a majority of rheumatoid arthritis (RA), however, this treatment can unexpectedly trigger the onset or exacerbate multiple sclerosis (MS). Recent progress in cellular immunology research provides a new framework to analyze the possible mechanism underlying these puzzling contradictory effects. The delicate balance of protective CD4(+)FoxP3(+) regulatory T cells (Tregs) and pathogenic CD4(+)FoxP3(-) effector T cells (Teffs) is crucial for the outcome of anti-TNF treatment of autoimmune disease. There is convincing evidence that TNF, in addition to stimulating Teffs, is able to activate and expand Tregs through TNFR2, which is preferentially expressed by Tregs. Therefore, the contrasting effects of TNF on Tregs and Teffs are likely to determine the therapeutic effect of anti-TNF treatment. In this review, we discuss the current understanding of the general effect of TNF on the activation of T cells, and the impact of TNF on the function of Teffs and Tregs. Understanding the differential effects of TNF on Teffs and Tregs is fundamentally required for the design of more effective and safer anti-TNF or anti-TNF receptor(s) therapeutic strategy for autoimmune diseases.  相似文献   

13.
Differential role of TNF receptors in cellular trafficking of intact TNF.   总被引:2,自引:0,他引:2  
BACKGROUND/AIMS: Although ligand signaling and degradation within the cell have received much attention, few studies have quantified the role of receptors on the transcytosis of ligand into and out of the cell in intact form. Accordingly, we determined the differential role of the two receptors for tumor necrosis factor alpha (TNFR1, TNFR2) on cellular transcytosis. METHODS: TNFR1 and TNFR2 were overexpressed in HEK293 cells by transient transfection. Cell surface binding, endocytosis, and exocytosis of (125)I-TNF were quantified. Degradation was determined by acid precipitation and size-exclusion chromatography. RESULTS: TNFR1- mediated uptake of TNF was faster than TNFR2-mediated uptake of TNF. TNFR2, however, exhibited greater capacity, leading to a higher percentage release of TNF into the exocytosis medium. Rather than being degraded, most of the TNF inside the cell remained intact for 1 h. Both receptors exerted protective roles against degradation, but there was no cooperativity between them. CONCLUSION: The effects of TNFR1 and TNFR2 in shepherding TNF across the cell illustrate the differential roles of receptors on the cellular trafficking of the ligand in intact form so as to facilitate its biological effects.  相似文献   

14.
TNF signaling: early events and phosphorylation   总被引:1,自引:0,他引:1  
Tumor necrosis factor-alpha (TNF) is a major mediator of apoptosis as well as immunity and inflammation. Inappropriate production of TNF or sustained activation of TNF signaling has been implicated in the pathogenesis of a wide spectrum of human diseases, including cancer, osteoporosis, sepsis, diabetes, and autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. TNF binds to two specific receptors, TNF-receptor type I (TNF-R1, CD120a, p55/60) and TNF-receptor type II (TNF-R2, CD120b, p75/80). Signaling through TNF-R1 is extremely complex, leading to both cell death and survival signals. Many findings suggest an important role of phosphorylation of the TNF-R1 by number of protein kinases. Role of TNF-R2 phosphorylation on its signaling properties is understood less than TNF-R1. Other cellular substrates as TRADD adaptor protein, TRAF protein family and RIP kinases are reviewed in relation to TNF receptor-mediated apoptosis or survival pathways and regulation of their actions by phosphorylation.  相似文献   

15.
The extracellular domain of the 55-kDa TNF receptor (rsTNFR beta) has been expressed as a secreted protein in baculovirus-infected insect cells and Chinese hamster ovary (CHO)/dhfr- cells. A chimeric fusion protein (rsTNFR beta-h gamma 3) constructed by inserting the extracellular part of the receptor in front of the hinge region of the human IgG C gamma 3 chain has been expressed in mouse myeloma cells. The recombinant receptor proteins were purified from transfected cell culture supernatants by TNF alpha- or protein G affinity chromatography and gel filtration. In a solid phase binding assay rsTNFR beta was found to bind TNF alpha with high affinity comparable with the membrane-bound full-length receptor. The affinity for TNF beta was slightly impaired. However, the bivalent rsTNFR beta-h gamma 3 fusion protein bound both ligands with a significantly higher affinity than monovalent rsTNFR beta reflecting most likely an increased avidity of the bivalent construct. A molecular mass of about 140 kDa for both rsTNFR beta.TNF alpha and rsTNFR beta.TNF beta complexes was determined in analytical ultracentrifugation studies strongly suggesting a stoichiometry of three rsTNFR beta molecules bound to one TNF alpha or TNF beta trimer. Sedimentation velocity and quasielastic light scattering measurements indicated an extended structure for rsTNFR beta and its TNF alpha and TNF beta complexes. Multiple receptor binding sites on TNF alpha trimers could also be demonstrated by a TNF alpha-induced agglutination of Latex beads coated with the rsTNFR beta-h gamma 3 fusion protein. Both rsTNFR beta and rsTNFR beta-h gamma 3 were found to inhibit binding of TNF alpha and TNF beta to native 55- and 75-kDa TNF receptors and to prevent TNF alpha and TNF beta bioactivity in a cellular cytotoxicity assay. Concentrations of rsTNFR beta-h gamma 3 equimolar to TNF alpha were sufficient to neutralize TNF activity almost completely, whereas a 10-100-fold excess of rsTNFR beta was needed for similar inhibitory effects. In view of their potent TNF antagonizing activity, recombinant soluble TNF receptor fragments might be useful as therapeutic agents in TNF-mediated disorders.  相似文献   

16.
TNF is an exciting cytokine which has helped to establish many paradigms in immunology. Although TNF itself has found only very limited use in the clinic, anti-cytokine therapy, which targets this single molecule, has enjoyed astounding success in treatment of a growing number of human diseases. However, since TNF mediates unique physiologic functions, in particular those related to host defense, TNF blockade may result in unwanted consequences. Much of our understanding about TNF intrinsic functions in the body, as well as about consequences of its overexpression and ablation, is based on studying phenotypes of various genetically engineered mice. Here we review mouse studies aimed at understanding TNF physiologic functions using transgenic and knockout models, and we discuss additional mouse models that may be helpful in the future.  相似文献   

17.
Recombinant human tumor necrosis factor (rHuTNF) enhanced nonspecific resistance of mice to various bacterial and fungal infections, indicating that the protective effect previously reported by us with serum TNF (sTNF) prepared in mice, could be attributed to this macrophage-derived factor. Comparative assays with both TNF preparations have shown that the protection against the infections challenges was largely correlated with antitumor activity. The protective effect of the rHuTNF preparation, expressed from a cDNA clone in Escherichia coli, was not due to contaminating endotoxin products. Since recombinant TNF and sTNF have no direct bactericidal or anti-fungal activity, the enhanced resistance to infections can be explained by the action of TNF on macrophages and polymorphonuclear cells. The experimental data support the interpretation that TNF has an important role in nonspecific immunity.  相似文献   

18.
Signalling pathways of the TNF superfamily: a double-edged sword   总被引:1,自引:0,他引:1  
Two different tumour-necrosis factors (TNFs), first isolated in 1984, were found to be cytotoxic to tumour cells and to induce tumour regression in mice. Research during the past two decades has shown the existence of a superfamily of TNF proteins consisting of 19 members that signal through 29 receptors. These ligands, while regulating normal functions such as immune responses, haematopoiesis and morphogenesis, have also been implicated in tumorigenesis, transplant rejection, septic shock, viral replication, bone resorption, rheumatoid arthritis and diabetes; so indicating their role as 'double-edged swords'. These cytokines either induce cellular proliferation, survival, differentiation or apoptosis. Blockers of TNF have been approved for human use in treating TNF-linked autoimmune diseases in the United States and other countries.  相似文献   

19.
TNF activates P-glycoprotein in cerebral microvascular endothelial cells.   总被引:2,自引:0,他引:2  
BACKGROUND/AIMS: Multidrug resistance proteins (MDRs, including P-glycoproteins) are efflux pumps that serve important biological functions but hinder successful drug delivery to the CNS. Many chemotherapeutic agents, anti-epileptics, anti-HIV drugs, and opiates are substrates for MDRs. Therefore, understanding the regulation of MDRs in the endothelial cells composing the blood-brain barrier has therapeutic implications. METHODS: We used microarray, real time RT-PCR, Western blotting, and uptake of vinblastine by RBE4 cerebral endothelial cells to test the effects of tumor necrosis factor alpha (TNF) on the expression and functions of P-glycoprotein (MDR1). RESULTS: The proinflammatory cytokine TNF specifically induced the expression and enhanced the function of MDR1 in RBE4 cells. The persistent upregulation of MDR1 mRNA was shown by cDNA microarray at 6, 12, and 24 h after TNF treatment. This was confirmed by real-time RT-PCR between 2 and 24 h. MDR1 protein expression was increased 6 to 24 h after TNF treatment and resulted in a significant reduction in the cellular uptake of (3)H-vinblastine. CONCLUSION: The drug efflux transporter in cerebral endothelial cells can be upregulated by TNF. This suggests that adjunctive anti-TNF treatment has novel therapeutic potential in conditions such as brain cancer, epilepsy, neuroAIDS, and chronic pain.  相似文献   

20.
Tumour necrosis factor (TNF) ligand members and their associated TNF receptor (TNFR) superfamilies have many diverse physiological roles. TNF is thought to play a critical role in the pathophysiology of a range of diseases including refractory asthma, sepsis, ankylosing spondylitis, lupus, type II diabetes, multiple sclerosis and psoriasis. The recent continued expansion of the novel anti-TNF therapeutic agents (etanercept and infliximab) has seen major improvements in the treatment of some inflammatory-based human diseases including notably rheumatoid arthritis and Crohn’s disease, with other conditions currently being trialled using anti-TNF agents. The cellular signalling machinery used by TNFRs to achieve their many cellular responses are discussed, as is the gonadotrophin-releasing hormone (GnRH) receptor signalling mechanisms. TNF is known to have many actions throughout the body including effects on the hypothalamic-pituitary-adrenal/gonadal axes, with many anti-gonadotrophic effects including a role in the development of endometriosis. These interactions between TNF, GnRH and gonadotrophs are discussed. Special issue article in honor of George Fink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号