首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A putative laccase gene was cloned from Shigella dysenteriae W202 and expressed in Escherichia coli as a soluble fusion protein with high yield. The purified product (Wlac) was characterized as the CueO-like laccase from E. coli, a monomer of molecular mass 55 kDa, with a maximum activity of 24.4 U/mg (Km = 0.086) and a pH optimum of 2.5, in a standard assay using ABTS (2,2′-azino-di(3-ethyl-benzthiazoline-6-sulfonate) as the substrate. Activity was stable at 0–25 °C but inhibited above 40 °C. Purified Wlac was completely inhibited by 200 mM EDTA and partially by 32 mM SDS, 50 mM NaN3 and 60 mM thioglycolic acid. Activity was stimulated by Cu2+; other metal ions had only slight or negative effects. Two mutated variants, WlacS and WlacD, were obtained by substituting Glu 106 with Phe 106, and adding a deletion of an α-helix domain (from Leu 351 to Gly 378). WlacS had a 2.2-fold (52.9 U/mg) and WlacD a 3.5-fold (85.1 U/mg) higher enzyme activity than the wild-type laccase and WlacD showed greater thermostability at higher temperatures. Sce VMA intein-associated fusion proteins maintained ~80% of total enzyme activity. Thus, deletion and site-directed mutagenesis of laccases are capable of promoting both enzymatic activity and thermostability.  相似文献   

2.
l-Arabinose isomerase (EC 5.3.1.4, l-AI) mainly catalyzes the reversible aldose–ketose isomerization between l-arabinose and l-ribulose. l-AIs can also catalyze other reactions, such as the conversion of d-galactose to d-tagatose. In this study, the araA gene encoding l-AI was PCR-cloned from Thermoanaerobacterium saccharolyticum NTOU1 and then expressed in Escherichia coli. The recombinant l-AI was purified from the cell-free extract using nickel nitrilotriacetic acid metal-affinity chromatography. The purified enzyme showed an optimal activity at 70 °C and pH 7–7.5. The enzyme was stable at pHs ranging from 6.5 to 9.5 and the activity was fully retained after 2 h incubation at 55–65 °C. The low concentrations of divalent metal ions, either 0.1 mM Mn2+ or 0.05 mM Co2+, could improve both catalytic activity and thermostability at higher temperatures. The recombinant T. saccharolyticum NTOU1 l-AI has the lowest demand for metal ions among all characterized thermophilic l-AIs. This thermophilic l-AI shows a potential to be used in industry to produce d-tagatose from d-galactose.  相似文献   

3.
《Process Biochemistry》2014,49(9):1429-1439
l-Theanine, which has seen increasing use in the functional food industry, can be prepared via enzymatic synthesis using γ-glutamyltranspeptidase (GGT; EC 2.3.2.2). In this study, the GGT from Bacillus subtilis 168 was cloned and expressed as a secreted protein using Escherichia coli BL21(DE3). The enzymatic properties of the GGT and the optimal conditions for the enzymatic synthesis of l-theanine were investigated in detail. The activity of the enzyme was optimal at pH 10; the optimal temperature was 50 °C. Desirable pH stability was observed between pH 5 and pH 12, and adequate thermostability was seen at 50 °C. In 5 h at 37 °C, the enzyme converted 200 mM l-glutamine and 2.2 M ethylamine to l-theanine with a final yield of 78%. Yields of l-theanine decreased to 58% when using 500 mM Gln and 45% when using 1 M Gln. The yield of l-theanine obtained at high substrate concentration provides the basis for the industrial-scale production of l-theanine.  相似文献   

4.
Glucose isomerase is an important industrial enzyme that catalyzes the reversible isomerization of glucose to fructose. In this study, the effect of cobalt ions (Co2+) on the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca was analyzed. The activity of glucose isomerase from engineered Escherichia coli supplemented with 1 mM Co2+ (C-GI) reached 41 U/ml, 2.1-fold higher than enzyme prepared from E. coli without additive (GI). The purified C-GI also exhibited an increased specific activity (23.8 U/mg compared to 12.1 U/mg for GI) and a greater thermostability (half-life of 17 h at 75 °C, 11.3-fold higher than GI (1.5 h)). The optimal temperature for C-GI shifted from 80 °C to 85 °C and demonstrated higher activity over pH 7.0–9.0. The kcat/Km value of C-GI (89.3 M?1 s?1) for the isomerization of glucose to fructose was nearly 1.75-fold higher than that of GI. In addition, the engineered cells were immobilized with the method of flocculation-cross linking. The immobilized cells supplemented with 1 mM Co2+ (C-IGI) had a better operational performance than cells without additives (IGI); at the end of 6 cycles, the conversion rate of C-IGI was still 43.1%, meeting the conversion rate requirement.  相似文献   

5.
The β-glucosidase gene Tt-bgl from Thermotoga thermarum DSM 5069T was cloned and overexpressed in Escherichia coli. A simple strategy, induction at 37 °C with no IPTG, was explored to reduce the inclusion bodies, by which the activity of Tt-BGL was 13 U/mL in LB medium. Recombinant Tt-BGL was purified by heat treatment followed by Ni–NTA affinity. The optimal activity was at pH 4.8 and 90 °C. The activity of Tt-BGL was significantly enhanced by methanol and Al3+. The enzyme was stable over pH range of 4.4–8.0, and had a 2-h half life at 90 °C. The Vmax for p-nitrophenyl-β-d-glucopyranoside and ginsenoside Rb1 was 142 U/mg and 107 U/mg, while the Km was 0.59 mM and 0.15 mM, respectively. The activity of the enzyme was not inhibited by ginsenoside Rb1 (36 g/L). It was activated by glucose at concentrations lower that 400 mM. With glucose further increasing, the activity of Tt-BGL was gradually inhibited, but remained 50% of the original value in even as high as 1500 mM glucose. Under the optimal conditions, Tt-BGL transformed ginsenoside Rb1 (36 g/L) to Rd by 95% in 1 h.  相似文献   

6.
The effects of the natural phytochemicals trans-cinnamic acid (CA) and ferulic acid (FA) at concentrations of 1–20 mM (CA) and 1–25 mM (FA) on sclerotial production by Aspergillus flavus and Aspergillus parasiticus were evaluated. Studies on sclerotium number and size were carried out in different growth media and water potentials (MPa). High concentrations of CA (20 mM, ?0.75 MPa; 10 mM, ?3.5 MPa) and FA (10, 20, 25 mM, ?0.75 and ?3.5 MPa) significantly reduced sclerotial production of Aspergillus strains. Overall, CA at concentrations of 10 and 20 mM on Czapek Dox medium (CD), maize meal extract agar (MMEA) and maize meal extract agar with sucrose and NaNO3 (MMEA S/N) inhibited sclerotium most in the four species assayed. The data show that the sclerotia characteristics of A. flavus and A. parasiticus were influenced by natural phytochemicals and modifications of growth media and water potential. CA and FA could be used at high concentrations to prevent the survival of Aspergillus species in grain.  相似文献   

7.
The production of β-fructofuranosidases by Aspergillus niveus, cultivated under submerged fermentation using agroindustrial residues, was investigated. The highest productivity of β-fructofuranosidases was obtained in Khanna medium supplemented with sugar cane bagasse as carbon source. Glucose enhanced the production of the intracellular enzyme, whereas that of the extracellular one was decreased. The intracellular β-fructofuranosidase was a trimeric protein of approximately 141 kDa (gel filtration) with 53.5% carbohydrate content, composed of 57 kDa monomers (SDS-PAGE). The optimum temperature and optimum pH were 60 °C and 4.5, respectively. The purified enzyme showed good thermal stability and exhibited a half-life of 53 min at 60 °C. β-Fructofuranosidase activity was slightly activated by Cu2+, Mn2+, Mg2+, and Na+ at 1 mM concentration. The enzyme hydrolyzed sucrose, raffinose, and inulin, with Kd values of 5.78 mM, 5.74 mM, and 1.74 mM, respectively.  相似文献   

8.
《Process Biochemistry》2014,49(9):1422-1428
A β-xylosidase gene (xylA4) was identified in the genome sequence of thermoacidophilic Alicyclobacillus sp. A4. The deduced amino acid sequence was highly homologous with the β-xylosidases of family 52 of the glycoside hydrolases (GH). The full-length gene consisted of 2097 bp and encoded 698 amino acids without a signal peptide. The gene product was successfully expressed in Escherichia coli with an activity of 564.9 U/mL. Recombinant XylA4 was purified by Ni2+-NTA affinity chromatography with a molecular mass of 78.5 kDa. The enzyme showed optimal activity at pH 6.0 and 65 °C, and remained stable over the pH range of 5.0–9.0. The thermostability of XylA4 is noteworthy, retaining almost all of the activity after 1 h incubation at 65 °C. Using p-nitrophenyl-β-d-xylopyranoside (pNPX) as the substrate, XylA4 had the highest specific activity (261.1 U/mg) and catalytic efficiency (601.5/mM/s) known so far for GH52 xylosidases. The enzyme displayed high tolerance to xylose, with a Ki value of approximately 88.7 mM. It also had synergy with xylanase XynBE18 from Paenibacillus sp. E18 in xylan degradation, releasing more xylose (up to 1.43 folds) than XynBE18 alone. Therefore, this thermostable xylose-tolerant β-xylosidase may have a great application potential in many industrial fields.  相似文献   

9.
In this paper, two genes that encoded two soluble type IV adenylyl cyclases (AC) from the hyperthermophilic archaeon Pyrococcus furiosus (PFAC I and PFAC II) were cloned and expressed in Escherichia coli (E. coli) BL21 (DE3). Amino acid sequence analysis of the two enzymes showed 29% homology. PFAC I and PFAC II were both Mn2+ activated enzyme. They were purified by His-trap chromatography and had a specific activity of 3.1 × 103 U/mg at pH 10.0, 95 °C (PFAC I) and 2.0 × 103 U/mg at pH 11.0, 95 °C (PFAC II), respectively. The Km and kcat of PFAC I was 1.38 mM and 1.11 s−1. The Km and kcat of PFAC II was 1.44 mM and 0.80 s−1. The thermostability of PFAC I and PFAC II were higher than the soluble type IV adenylyl cyclases from Yersinia pestis (YpAC-IV). All of the properties suggested that these two adenylyl cyclases may be useful for the industrial producing of cyclic adenosine 3′,5′-monophosphate (cAMP).  相似文献   

10.
Esterase G (EstG) from dibutyl phthalate (DBP)-degrading Sphingobium sp. SM42 was immobilized on amine-functionalized supports through aldehyde tag technology. Two different sulfatase motif tags, either LCTPSR (cysteine-type) or MSAPAR (serine-type), each of which is recognized by a specific formylglycine generating enzyme (FGE), were fused to the C-terminus of EstG. The cysteine-specific FGE was derived from Pseudomonas putida KT2440 while Klebsiella sp. SLS5 provided serine-specific FGE. The EstG with serine-type aldehyde tag showed a greater immobilization yield and higher specific activity by 4.8-fold and 1.8-fold, respectively. The immobilized EstG retained over 90% of its original activity after seven cycles of usage, and exhibited significantly improved thermostability by retaining 66% activity after 1 h incubation at 60 °C. Additionally, nearly 100% and over 30% of the DBP in 10 mM and 100 mM solutions, respectively, was degraded by the immobilized EstG within 18 h.  相似文献   

11.
A novel dioscin-α-l-rhamnosidase was isolated and purified from fresh bovine liver. The activity of the enzyme was tested using diosgenyl-2,4-di-O-α-l-rhamnopyranosyl-β-d-glucopyranoside as a substrate. It was cleaved by the enzyme to two compounds, rhamnoses and diosgenyl-O-β-d-glucopyranoside. The optimal conditions for enzyme activity were that temperature was at 42 °C, pH was at 7, reaction time was at 4 h, and the substrate concentration was at 2%. Furthermore, metal ions such as Fe3+, Cu2+, Zn2+, Ca2+ and Mg2+ showed different effects on the enzyme activity. Mg2+ acted as an activator whereas Cu2+, Fe3+, and Zn2+ acted as strong inhibitors in a wide range of concentrations from 0 to 200 mM. It was interesting that Ca2+ played a role as an inhibitor when its concentration was at 10 mM and acted as an activator at the other concentrations for the enzyme. Moreover, the molecular weight of enzyme was determined as 75 kDa.  相似文献   

12.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

13.
This work reports the purification and biochemical characterization of angiotensin I-converting enzyme (ACE) from ostrich (Struthio camelus) lung. The molecular weight of the purified enzyme was approximately evaluated to be 200 kDa and the maximum enzyme activity was observed at pH 7.5. The enzyme activity was increased by detergents of Triton X-100 (0.01%), cetyltrimethylammonium bromide (CTAB) (0.1 and 1 mM) and sodium dodecyl sulfate (SDS) (0.1 mM), while decreased by Triton X-100 (1% and 10%) and SDS (1 mM and 10 mM). The secondary and tertiary structure and activity of ACE in the absence and presence of trifluoroethanol (TFE) were investigated using circular dichroism, fluorescence quenching and UV–visible spectroscopy, respectively. Our results revealed that TFE stabilizes ACE at low concentrations, while acts as a denaturant at higher concentration (20%). The Km, Kcat and Kcat/Km values of ostrich ACE towards FAPGG were 0.8 × 10?4 M, 59,240 min?1 and 74 × 107 min?1 M?1, respectively. The values of IC50 and Ki for captopril were determined to be 36.5 nM and 16.6 nM, respectively. In conclusion, ostrich lung ACE is a new enzyme which could be employed as a candidate for studying ACE structure and its natural or synthetic inhibitors.  相似文献   

14.
《Process Biochemistry》2014,49(4):668-672
Porcine pancreatic lipase (PPL) was chemically modified with various functional ionic liquids (ILs) to increase its catalytic performance in water-miscible IL. Catalytic activity and thermostability were tested with a p-nitrophenyl palmitate (pNPP) hydrolysis reaction. The native enzyme lost 18% of its initial activity in 0.4 M [MMIm][MeSO4], whereas the activities of all the modified enzymes increased. The [HOOCBMIm][Cl] modification led to a 2-fold increase in activity in 0.3 M [MMIm][MeSO4] than in aqueous. All the modified enzymes exhibited higher thermostability compared with the native enzyme at high temperature. In particular, the [HOOCBMIm][Cl] modification led to a 6-fold increase in thermostability at 60 °C. Conformational changes were confirmed by fluorescence spectroscopy and circular dichroism spectroscopy to elucidate the mechanism of catalytic performance alteration.  相似文献   

15.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

16.
Fifty-three plant-associated microorganisms were investigated for their ability to convert sucrose to its isomers. These microorganisms included one Dickeya zeae isolate and 7 Enterobacter, 3 Pantoea, and 43 Pectobacterium species. Eleven out of the 53 strains (21%) showed the ability to transform sucrose to isomaltulose and trehalulose. Among those, Pectobacterium carotovorum KKH 3-1 showed the highest bioconversion yield (97.4%) from sucrose to its isomers. In this strain, the addition of up to 14% sucrose in the medium enhanced sucrose isomerase (SIase) production. The SIase activity at 14% sucrose (47.6 U/mg dcw) was about 3.6-fold higher than that of the negative control (13.3 U/mg dcw at 0% sucrose). The gene encoding SIase, which is comprised a 1776 bp open reading frame (ORF) encoding 591 amino acids, was cloned from P. carotovorum KKH 3-1 and expressed in Escherichia coli. The recombinant SIase (PCSI) was shown to have optimum activity at pH 6.0 and 40 °C. The reaction temperature significantly affected the ratio of sucrose isomers produced by PCSI. The amount of trehalulose increased from 47.5% to 79.1% as temperature was lowered from 50 °C to 30 °C, implying that SIase activity can be controlled by reaction temperature.  相似文献   

17.
Activation of enzymes by low concentrations of denaturants has been reported for a limited number of enzymes including lipocalin-type prostaglandin D synthase (L-PGDS) and adenylate kinase. During unfolding studies on human biliverdin-IXα reductase it was discovered that the enzyme is activated at low concentrations of urea. Under standard assay conditions the native enzyme displays pronounced substrate inhibition with biliverdin as variable substrate; however in the presence of 3 M urea, the substrate inhibition is abolished and the enzyme exhibits Michaelian kinetics. When the initial rate kinetics with NADPH as variable substrate are conducted in 3 M urea, the Vmax is increased 11-fold to 1.8 μmol/min/mg and the apparent Km for biliverdin increases from 1 to 3 μM. We report the existence of two kinetically distinct folded intermediates between the native and unfolded forms. When the period of incubation with urea was varied prior to measuring enzyme activity, the apparent Vmax was shown to decay to half that seen at zero time with a half life of 5.8 minutes, while the apparent Km for NADPH remains constant at approximately 5 μM. With NADH as cofactor the half life of the activated (A) form was 2.9 minutes, and this form decays in 3 M urea to a less active (LA) form. The apparent Km for NADH increases from 0.33 mM to 2 mM for the A and LA forms. These kinetically distinct species are reminiscent of the activity-enhanced and inactive forms of L-PGDS observed in the presence of urea and guanidine hydrochloride.  相似文献   

18.
19.
A transferase was isolated, purified and characterised from Aspergillus aculeatus. The enzyme exhibited a pH and temperature optima of 6.0 and 60 °C, respectively and under such conditions remained stable with no decrease in activity after 5 h. The enzyme was purified 7.1 fold with a yield of 22.3% and specific activity of 486.1 U mg?1 after dialysis, concentration with polyethyleneglycol (30%) and DEAE-Sephacel chromatography. It was monomeric with a molecular mass of 85 kDa and Km and Vmax values of 272.3 mM and 166.7 μmol min?1 ml?1. The influence of pH, temperature, reaction time, and enzyme and sucrose concentration on the formation of short-chain fructooligosaccharides (FOS) was examined by statistical response surface methodology (RSM). The enzyme showed both transfructosylation and hydrolytic activity with the transfructosylation ratio increasing to 88% at a sucrose concentration of 600 mg ml?1. Sucrose concentration (400 mg ml?1) temperature (60 °C), and pH (5.6) favoured the synthesis of high levels of GF3 and GF4. Incubation time had a critical effect on the yield of FOS as the major products were GF2 after 4 h and GF4 after 8 h. A prolonged incubation of 16 h resulted in the conversion of GF4 into GF2 as a result of self hydrolase activity.  相似文献   

20.
Improvement of thermostability in engineered enzymes can allow biocatalysis on substrates with poor aqueous solubility. Denaturation of the cofactor-binding loops of Escherichia coli transketolase (TK) was previously linked to the loss of enzyme activity under conditions of high pH or urea. Incubation at temperatures just below the thermal melting transition, above which the protein aggregates, was also found to anneal the enzyme to give an increased specific activity. The potential role of cofactor-binding loop instability in this process remained unclear. In this work, the two cofactor-binding loops (residues 185–192 and 382–392) were progressively mutated towards the equivalent sequence from the thermostable Thermus thermophilus TK and variants assessed for their impact on both thermostability and activity. Cofactor-binding loop 2 variants had detrimental effects on specific activity at elevated temperatures, whereas the H192P mutation in cofactor-binding loop 1 resulted in a two-fold improved stability to inactivation at elevated temperatures, and increased the critical onset temperature for aggregation. The specific activity of H192P was 3-fold and 19-fold higher than that for wild-type at 60 °C and 65 °C respectively, and also remained 2.7-4 fold higher after re-cooling from pre-incubations at either 55 °C or 60 °C for 1 h. Interestingly, H192P was also 2-times more active than wild-type TK at 25 °C. Optimal activity was achieved at 60 °C for H192P compared to 55 °C for wild type. These results show that cofactor-binding loop 1, plays a pivotal role in partial denaturation and aggregation at elevated temperatures. Furthermore, a single rigidifying mutation within this loop can significantly improve the enzyme specific activity, as well as the stability to thermal denaturation and aggregation, to give an increased temperature optimum for activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号