首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isometric and force-velocity properties of the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles were investigated immediately after and during recovery from a fatiguing stimulus regime (40 Hz for 330 ms every second for 180 s) in the anesthetized cat. The amplitude of the isometric twitch of FDL was unaffected but in soleus it remained depressed for much of the recovery period. Immediately after stimulation the twitch time to peak of FDL increased to 140% of the control (prefatigue) value and then reverted to control values. The maximum isometric tetanic tension (Po) developed by FDL was reduced to 67% of control values immediately after the stimulus regime, whereas soleus declined to 93% of control. Recovery of maximum force development was achieved after 45 min in FDL and after 15 min in soleus. The maximum speed of shortening of FDL was reduced to 63% of control values immediately after fatigue; despite some recovery within the first 30 min, it remained depressed during the remainder of the recovery period (up to 300 min). Maximum speed of shortening was unaltered in soleus. The a/Po value transiently increased to 176% of control values in FDL immediately after the fatigue regime but promptly returned to control values. Force-velocity properties of soleus were not affected by the stimulus regime. It is concluded that in FDL changes in the maximum speed of shortening and maximum isometric tension as a result of the stimulus regime are attributable to changes in the intrinsic behavior of cross-bridges and the metabolic status of the fibers, particularly in the fast-twitch fatigue-resistant fibers.  相似文献   

2.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

3.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

4.
Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).  相似文献   

5.
The purpose of this study was to determine the reliability of investigating electromyography (EMG) of selected leg muscles during walking. Tibialis posterior and peroneus longus EMG activity were recorded via intramuscular electrodes. Tibialis anterior and medial gastrocnemius EMG activity were recorded with surface electrodes. Twenty-eight young adults attended two test-sessions approximately 15 days apart. Relative and absolute measures of reliability were calculated for EMG timing and amplitude parameters during specific phases of the gait cycle. Maximum contractions and sub-maximal contractions were obtained via maximum isometric voluntary contractions and a very fast walking speed, respectively. Time of peak EMG amplitude for all muscles displayed relatively narrow limits of random error. However, reliability of peak and root mean square amplitude parameters for tibialis posterior and peroneus longus displayed unacceptably wide limits of random error, regardless of the normalisation reference technique. Whilst some amplitude parameters for tibialis anterior and medial gastrocnemius displayed good to excellent relative reliability, the corresponding values for absolute error were generally large.Timing and amplitude EMG parameters for all muscles displayed low to moderate coefficient of variation within each test session (range: 7–25%). Overall, between-participant variability was minimised with sub-maximal normalisation values. These results demonstrate that re-application of electrodes results in large random error between sessions, particularly with tibialis posterior and peroneus longus. Researchers planning studies of these muscles with a repeated-test design (e.g. to evaluate the effect of an intervention) must consider whether this level of error is acceptable.  相似文献   

6.
M J Miller  K Shannon  M B Reid 《Life sciences》1989,45(25):2419-2428
The isometric contractile response of the directly-stimulated rat diaphragm was studied before and following addition of the calcium channel blocker, nifedipine. Nifedipine (10 micrograms/ml and 30 micrograms/ml bath concentrations) significantly increased isometric force output during twitch and unfused tetanic stimulation. Force potentiation during unfused tetanic stimulation was equivalent during either high or low voltage stimulation. Nifedipine had no effect on the time to peak force, half relaxation time, or relaxation time during twitch stimulation; thus, both activation and relaxation rates were increased. The force potentiating actions of nifedipine persisted in a calcium-free bathing solution and were enhanced by d-tubocurarine. In contrast to the force enhancing effects found with twitch and unfused tetanic stimulation, nifedipine caused a small but significant reduction in isometric force during maximal fused tetanic stimulation. It is concluded that the force potentiating effects of nifedipine on rat diaphragm are not due to fiber recruitment, enhancement of neuromuscular excitation, or altered inward trans-sarcolemmal calcium flux, but may result from a direct effect of the drug on the rate of activation of the contractile apparatus.  相似文献   

7.
The goal of this study was to characterize how isotonic contractions affect the rate of fatigue development. Muscle bundles dissected from frog sartorius muscles were stimulated with 100-ms long train of pulses (0.5 ms, 6 V, 140 Hz). To measure the effect of the isotonic contractions, isometric tetanus were elicited at regular time intervals during the stimulation to fatigue. In general, isotonic contractions caused a faster decrease in tetanic force than isometric contractions. The difference in tetanic force between an isotonic and isometric fatigue increased gradually over a 20-min period to 7.9 and 13.5% at 0.04 and 0.1 trains/s (TPS), respectively. At 0.2, 0.5, and 1.0 TPS, the decrease in tetanic force was also faster during an isotonic fatigue, which resulted in an initial difference in tetanic force between the two types of fatigue. The difference did not exceed 18.5% and did not persist throughout the stimulation period; i.e., the difference disappeared before the end of the fatigue stimulation. The half-relaxation time was prolonged during fatigue development, and the prolongation was greater during an isotonic fatigue, except at 0.04 TPS. The increases in the half-relaxation time at 0.2, 0.5, and 1.0 TPS were followed by a decrease, and the decreases were especially pronounced during an isotonic fatigue at 0.5 and 1.0 TPS. The results showed for the first time that isotonic contractions cause a faster rate of fatigue development in frog sartorius muscles, and this effect depends on the frequency of stimulation.  相似文献   

8.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

9.
Neuromuscular function in adult male rats was studied following 30 days of exposure to a 60-Hz electric field at 100 kV/m (unperturbed field strength). Isometric force transducers were attached to the tendons of the plantaris (predominantly fast twitch), and soleus (predominantly slow twitch) muscles in the urethan-anesthetized rat. Square-wave stimuli were delivered to the distal stump of the transected sciatic nerve. Several measurements were used to characterize neuromuscular function, including twitch characteristics, chronaxie, tetanic and posttetanic potentiation, and fatigue and recovery. The results from three independent series of experiments are reported. Only recovery from fatigue in slow-twitch muscles was consistently and significantly affected (enhanced) by electrifield exposure. This effect does not appear to be mediated by field-induced changes in either neuromuscular transmission, or in the contractile mechanism itself. It is suggested that the effect may be mediated secondary to an effect on mechanisms regulating muscle blood flow or metabolism.  相似文献   

10.
The effect of two weeks of tenotomy on posttetanic isometric contractile responses of the rat fast: Extensor digitorum longus and slow: soleus muscles was studied in experiments on isolated muscle preparations. Direct tetanic stimulation (100 impulses, 50 Hz) increased the force of contractions by 20-25% (p < 0.05) of both, control and tenotomized fast muscles. Identical to above tetanic stimulation of control, slow muscle resulted in posttetanic depression, a decrease in the amplitude of contractile responses. Tenotomized slow muscles did not develop posttetanic depression. Caffeine (4 mM) increased and dandrolene (10 microM) decreased the force of unitary and tetanic contractions of control and tenotomized muscles. Neither drug, however, affected development of posttetanic phenomena in ether fast or slow muscles. The fact that in extensor digitorum longus, posttetanic potentiation is preserved for at least forty days of tenotomy but disappears after only 2 weeks of denervation suggests important role of neurotrophic influences in regulation of posttetanic responses of fast muscles.  相似文献   

11.
With fatigue, force generation may be limited by several factors, including impaired impulse transmission and/or reduced motor drive. In 5-min isometric maximal voluntary contraction, no decline was seen in the peak amplitude of the tibialis anterior compound muscle mass action potential (M wave) either during or immediately after the voluntary effort, provided maximal nerve stimulation was retained. For first dorsal interosseous (FDI) muscle, M wave amplitudes declined by 19.4 +/- 1.6% during the first 2 min but did not change significantly thereafter, despite the continued force reduction (up to 94% in 5 min for both muscles). The duration of the FDI M waves increased (greater than 30%), suggesting that the small decline in amplitude was the result of increased dispersion between the responses of different motor units. Some subjects kept FDI maximally activated throughout, but when they used tibialis anterior, twitch occlusion and tetanic muscle stimulation showed that most subjects were usually only able to do so for the first 60 s and thereafter only during brief "extra efforts." Thus force loss during isometric voluntary contractions sustained at the highest intensities results mainly from failure of processes within the muscle fibers.  相似文献   

12.
This investigation examined the effects of hypokinesia/hypodynamia (H/H) on fatigability and contractile properties of rat soleus (S) and gastrocnemius (G) muscles. Whole-body suspension for 1 wk was used to eliminate hindlimb load-bearing functions and simultaneously permit voluntary isotonic contractions. Train stimulations (45/min, 16 min) resulted in significantly (P less than 0.05) faster rates of fatigue to lower asymptotes in G from H/H rats. Fatigue in the S was minimal at this stimulation frequency and differences between H/H and control animals were not significant. Contractile properties (twitch and tetanic) were measured before and after train stimulations. H/H suspension resulted in an increased twitch tension in G. However, H/H did not change train or tetanic tensions per gram or other G contractile properties. Peak twitch, train, and tetanic tensions, time to peak tension, one-half relaxation time, and twitch and tetanic peak rates of tension development and decline were unchanged by H/H in S muscles. These results indicate that 1 wk of H/H-induced muscle atrophy significantly increases fatigability in G but does not effect contractile properties of fast-twitch (G) or slow-twitch (S) muscles.  相似文献   

13.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

14.
We investigated the firing rate of motor units in the vastus lateralis muscle in five healthy young men (mean = 21.4 yr, SD = 0.9) during a sequence of isometric constant-torque contractions repeated to exhaustion. The contractions were sustained at 20% of the maximal voluntary level, measured at the beginning of the test sequence. Electromyographic (EMG) signals were recorded via quadrifilar fine-wire electrodes and subsequently decomposed into their constituent motor unit action potentials to obtain the motor unit firing times. In addition, we measured the whole muscle mechanical properties during the fatigue task using electrical stimulation. The firing rate of motor units first decreased within the first 10-20% of the endurance time of the contractions and then increased. The firing rate increase was accompanied by recruitment of additional motor units as the force output remained constant. The elicited twitch and tetanic torque responses first increased and then decreased. The two processes modulated in a complementary fashion at the same time. Our data suggest that, when the vastus lateralis muscle is activated to maintain a constant torque output, its motoneuron pool receives a net excitatory drive that first decreases to compensate for the short-lived potentiation of the muscle force twitch and then increases to compensate for the diminution of the force twitch. The underlying inverse relationship between the firing rate and the recruitment threshold that has been reported for nonfatigued contractions is maintained. We, therefore, conclude that the central nervous system control of vastus lateralis motor units remains invariant during fatigue in submaximal isometric isotonic contractions.  相似文献   

15.
The effects of pH on the kinetics of fatigue and recovery in frog sartorius muscle were studied to establish whether the pH to which muscles are exposed (extracellular pH) has an effect on both the rate of fatigue development and recovery from fatigue. When frog sartorius muscles were stimulated with short tetanic stimuli at rates varying from 0.2 to 2.0 trains/s, a time- and frequency-dependent decrease in force development was observed, but extracellular pH had comparatively little effect. The recovery of tetanic force was dependent on the extracellular pH. This effect was characterized by a rapid recovery in force at pH 8.0 and an inhibition of recovery at pH 6.4 even when force decreased by only 25% during stimulation. Even when muscles were fatigued at pH 8.0 the rate of force recovery was still very small at pH 6.4. A model is proposed in which a step of the contraction cycle changes from a normal to a fatigued state. The rate of this transition is a function of the stimulation frequency and not pH. The reverse transition, from a fatigued to normal state is pH dependent; i.e., it is inhibited by H+. Measurements of resting and action potentials show that extracellular pH influences these parameters in the fatigue state, but there is no evidence that these changes are directly responsible for the pH-dependent step in the reversal of fatigue.  相似文献   

16.
Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca(2+) regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca(2+)-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.  相似文献   

17.
Neuromuscular responses to explosive and heavy resistance loading   总被引:3,自引:0,他引:3  
The EMG power spectrum may shift towards higher frequencies with higher movement velocities. Fatigue, on the other hand, can cause a decrease in the frequency components. The purpose of this study was to examine acute effects of explosive (EE) and heavy resistance (HRE) concentric leg press exercise on muscle force, EMG and blood lactate. The EE included five sets of ten repetitions with 40±6% of the isometric maximum at a 100° knee angle performed as explosively as possible. The same number of repetitions was performed in HRE but with a heavier load (67±7% of the isometric maximum at a 100° knee angle). Maximal isometric and single concentric actions of different loads, and an isometric fatigue test were measured before and after both exercises. Surface EMG was recorded from the vastus medialis muscles for analyses of average EMG (aEMG) and EMG power spectrum. Muscle fiber composition of the vastus lateralis was determined and blood lactate measured throughout the exercises. Mean power frequency and median frequency were higher during EE than during HRE (P<0.05). They increased during EE (P<0.05) as the exercise progressed, whereas during HRE no change or even slight decreases were observed. Signs of fatigue after pure concentric work were not observed after EE, and even after HRE, possibly due to the relatively small range of motion and short duration of action time, the fatigue was not that extensive. The relative number of fast twitch fibers was correlated (r=0.87, P<0.05) with the change in blood lactate in HRE. It was concluded that there may be a greater use of fast twitch motor units in explosive movements and that instead of fatigue, the present number of concentric actions in explosive exercise seems to have facilitated the neuromuscular system.  相似文献   

18.
Skeletal muscle fatigue in vitro is temperature dependent   总被引:2,自引:0,他引:2  
Our purpose was to determine the effect of temperature on the fatigability of isolated soleus and extensor digitorum longus (EDL) muscles from rats during repeated isometric contractions. Muscles (70-90 mg) were studied at 20-40 degrees C in vitro. Fatigability was defined with respect to both the time and number of stimuli required to reach 50% of the force (P) developed at the onset of the fatigue test. Fatigue was studied during stimulation protocols of variable [force approximately 70% of maximum force (Po)] and constant frequency (28 Hz). Results for soleus and EDL muscles were qualitatively similar, but fatigue times were longer for soleus than for EDL muscles. During the variable-frequency protocol, development of approximately 70% of Po required an increase in stimulation frequency as temperature increased. During stimulation at these frequencies, fatigue time shortened as temperature increased. For both fatigue protocols, the relationship between temperature and the number of stimuli required to reach fatigue followed a bell-shaped curve, with maximum values at 25-30 degrees C. The temperature optimum for maximizing the number of isometric contractions to reach fatigue reflects direct effects of temperature on muscle function.  相似文献   

19.
Extraocular muscles (EOMs) are specialized skeletal muscles that are constantly active, generate low levels of force for cross sectional area, have rapid contractile speeds, and are highly fatigue resistant. The neuronal isoform of nitric oxide synthase (nNOS) is concentrated at the sarcolemma of fast-twitch muscles fibers, and nitric oxide (NO) modulates contractility. This study evaluated nNOS expression in EOM and the effect of NO modulation on lateral rectus muscle's contractility. nNOS activity was highest in EOM compared with diaphragm, extensor digitorum longus, and soleus. Neuronal NOS was concentrated to the sarcolemma of orbital and global singly innervated fibers, but not evident in the multi-innervated fibers. The NG-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor), increased submaximal tetanic and peak twitch forces. The NO donors S-nitroso-N-acetylcysteine (SNAC) and spermineNONOate reduced submaximal tetanic and peak twitch forces. The effect of NO on the contractile force of lateral rectus muscle is greater than previously observed on other skeletal muscle. NO appears more important in modulating contraction of EOM compared with other skeletal muscles, which could be important for the EOM's specialized role in generation of eye movements.  相似文献   

20.
The purpose of this study was to estimate the relative contributions of central and peripheral factors to the development of human muscle fatigue. Nine healthy subjects [five male, four female; age = 30 (2) years, mean (SE)] sustained a maximum voluntary isometric contraction (MVC) of the ankle dorsiflexor muscles for 4 min. Fatigue was quantitated as the fall in MVC. Three measures of central activation and one measure of peripheral activation (compound muscle action potential, CMAP) were made using electromyography (EMG) and electrical stimulation. Measures of intramuscular metabolism were made using magnetic resonance spectroscopy. After exercise, MVC and electrically stimulated tetanic contraction (50 Hz, 500 ms) forces were 22.2 (3.7)% and 37.3 (7.1)% of pre-exercise values, respectively. The measures of central activation suggested some central fatigue during exercise: (1) the central activation ratio [MVC/(MVC + superimposed tetanic force)] fell from 0.94 (0.03) to 0.78 (0.09), (2) the MVC/tetanic force ratio fell from 2.3 (0.7) to 1.3 (0.7), and (3) the integral of the EMG (iEMG) signal decreased to 72.6 (9.1)% of the initial value, while the CMAP amplitude was unchanged. Intramuscular pH was associated by regression with the decline in MVC force (and therefore fatigue) and iEMG. The results indicate that central factors, which were not associated with altered peripheral excitability, contributed approximately 20% to the muscle fatigue developed, with the remainder being attributable to intramuscular (i.e., metabolic) factors. The association between pH and iEMG is consistent with proton concentration as a feedback mechanism for central motor drive during maximal effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号