首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To elucidate the pathogenesis of Helicobacter pylori-associated gastritis, we studied immune responses of C57BL/6J wild-type (WT), SCID, and gene deficient (IFN-gamma-/- and IL-4-/-) mice following infection with a pathogenic isolate of H. pylori (SPM326). During early infection in WT mice, mononuclear and polymorphonuclear cells accumulated in the gastric lamina propria, and the numbers of cells in the inflamed mucosa expressing IFN-gamma, but not IL-4, mRNA rose significantly (p < 0.005), consistent with a local Th1 response. Splenic T cells from the same infected WT mice produced high levels of IFN-gamma, no detectable IL-4, and low amounts of IL-10 following in vitro H. pylori urease stimulation, reflecting a systemic Th1 response. Infected C57BL/6J SCID mice did not develop gastric inflammation despite colonization by many bacteria. Infected C57BL/10J and BALB/c mice also did not develop gastric inflammation and displayed a mixed Th1/Th2 splenic cytokine profile. These data imply a major role for the Th1 cytokine IFN-gamma in H. pylori-associated gastric inflammation in C57BL/6J mice. Compared with WT animals, infected IL-4-/- animals had more severe gastritis and higher levels of IFN-gamma production by urease-stimulated splenocytes (p < 0.01), whereas IFN-gamma-/- mice exhibited no gastric inflammation and higher levels of IL-4 production by stimulated splenocytes. These findings establish C57BL/6J mice as an important model for H. pylori infection and demonstrate that up-regulated production of IFN-gamma, in the absence of the opposing effects of IL-4 (and possibly IL-10), plays a pivotal role in promoting H. pylori-induced mucosal inflammation.  相似文献   

2.
Since urease of Helicobacter pylori is essential for its colonization, we focused attention on foodstuffs which inhibit the activity of this enzyme. Among plant-derived 77 foodstuff samples tested, some tea and rosemary extracts were found to clearly inhibit H. pylori urease in vitro. In particular, green tea extract (GTE) showed the strongest inhibition of H. pylori urease, with an IC(50) value of 13 microg/ml. Active principles were identified to be catechins, the hydroxyl group of 5(')-position appearing important for urease inhibition. Furthermore, when H. pylori-inoculated Mongolian gerbils were given GTE in drinking water at the concentrations of 500, 1000, and 2000 ppm for 6 weeks, gastritis and the prevalence of H. pylori-infected animals were suppressed in a dose-dependent manner. Since the acquisition by H. pylori of resistance to antibiotics has become a serious problem, tea and tea catechins may be very safe resources to control H. pylori-associated gastroduodenal diseases.  相似文献   

3.
4.
Yeo M  Park HK  Kim DK  Cho SW  Kim YS  Cho SY  Paik YK  Hahm KB 《Proteomics》2004,4(11):3335-3342
Heat shock proteins (HSPs) are crucial for the maintenance of cell integrity during normal cellular growth as well as during pathophysiological conditions. While functioning mainly as molecular chaperones, HSPs also appear to be involved in diverse biological activities, such as apoptosis, carcinogenesis, and cytoprotection from cytotoxic damage. Infection with Helicobacter pylori causes inflammation in the gastric mucosa, leading to gastritis, gastric ulcers, duodenal ulcer disease, and even gastric cancer, but the role of HSPs in H. pylori-associated gastropathy is not known. Using two-dimensional electrophoretic analysis, we have observed significant shifts in HSP profiles after H. pylori infection in RGM-1 cells. We therefore evaluated the effect of treatments that induce HSPs on H. pylori-induced inducible nitric oxide synthase (iNOS) expression. We found that H. pylori infection significantly attenuated the expression of HSP70, whereas exposure of cells to noncytotoxic heat shock or geranylgeranylacetone restored HSP70 expression, as well as suppressing the expression of iNOS, a major cause of H. pylori-induced gastric tissue damage. Our results suggest that induction of HSP70 confers cytoprotection against H. pylori infection by inhibiting the expression of iNOS. In conclusion, these results provide important insights into the flux in HSPs profiles in response to H. pylori infection and highlight the cytoprotective role of HSP70 in H. pylori infection.  相似文献   

5.
Urease is involved in Helicobacter pylori infection and survival in acid circumference. This study explored the overexpression of H. pylori-associated urease mRNAs in human gastric cancers by using a well-established membrane array analysis method in our lab. Analysis of 30 gastric cancer tissue specimens and 30 paired adjacent normal tissues demonstrated that urease genes involved in H. pylori infection were upregulated in gastric cancer tissues. UreA, G, and I are predominant genotypes found in gastric cancer tissues. However, the mRNA levels of UreC and UreE were hardly to be found in both gastric cancer and normal tissues in our study. In addition, we treated NIH-3T3 cells with two kinds of H. pylori exudates [weak urease activity (HP-W) and strong urease activity (HP-S)], which contained 1.6, 3.1, 6.5, 13, and 25.9 pg/mL urease of HP-W exudates and 18, 36, 75, 150, and 300 pg/mL urease of HP-S exudates. NIH-3T3 cells were treated with these different concentration components for 24 h. Cell proliferation rate was elevated 2.7%, 9.9%, 18.9%, 36.6%, and 42.9%, respectively, after HP-W exudates were treated, and elevated 8.1%, 31.9%, 45.9%, 74.9%, and 81.3%, respectively, after treatment with HP-S exudates. In further investigation of the time course of NIH-3T3 cells treated with 50 microg/mL H. pylori, the exudates revealed that the proliferation rate was elevated 14%, 23.7%, 38.7%, 31.6%, and 29%, respectively, after HP-W treatment and elevated 29.8%, 50.4%, 78.5%, 62.3%, and 55.9% after HP-S treatment for 6, 12, 24, 48, and 72 h, respectively. In conclusion, membrane array promises a new diagnostic tool to detect H. pylori more sensitively than the CLO test. These results suggest that urease may play an important role in the development of gastric mucosal hyperproliferation in H. pylori-induced gastritis.  相似文献   

6.
Molecular analysis of the gastric microflora in mice revealed that Helicobacter pylori infection causes an increase in microbial diversity. The stomachs of H. pylori-infected animals were colonized by bacteria which are naturally restricted to the lower intestinal tract. Clostridia, Bacteroides/Prevotella spp., Eubacterium spp., Ruminococcus spp., streptococci and Escherichia coli were detected exclusively in the stomachs of infected animals, whereas lactobacilli dominated the gastric flora in noninfected mice. The H. pylori-induced shifts in the gastric microbiota were independent from histological pathology and from changes in the gastric pH but were prevented by immunization of mice with live Salmonella expressing H. pylori urease. Immunized mice displayed reduced H. pylori levels in the gastric epithelium and developed a normal gastric microflora, indicating that vaccination may be protective against H. pylori-induced changes in the gastric flora.  相似文献   

7.
BACKGROUND: The hispid cotton rat has proven to be an excellent animal model for a variety of human infectious disease agents. This study was performed to evaluate the use of the cotton rat as a model of Helicobacter pylori infection. MATERIALS AND METHODS: Thirty-eight inbred cotton rats were orogastrically inoculated with a human strain of H. pylori. Twenty-eight control cotton rats were dosed with vehicle only. Animals were sacrificed at 2, 4, 12, 26, or 38 weeks after inoculation for bacterial and histologic and immunologic examinations. RESULTS: Helicobacter pylori was cultured from the glandular stomach of 89% of the infected cotton rats. The level of colonization was consistently high (approximately 10(4-6) colony-forming units/g tissue). Histologically, the spiral bacteria were demonstrated on the epithelial surface and in the foveolae of the gastric mucosa with highest numbers in the antrum. H. pylori infection was associated with antral-predominant, chronic active gastritis which progressively increased in severity over time. By week 26 of infection, moderate antral gastritis had developed with frequent involvement of the submucosa and formation of lymphocytic aggregates. Splenic T cells from infected cotton rats expressed mRNAs for interferon-gamma, interleukin-4, interleukin-6, and interleukin-10 following in vitro stimulation with H. pylori. Serum levels of H. pylori-specific immunoglobulin G were significantly elevated after 12 weeks of infection. CONCLUSIONS: The H. pylori-infected cotton rat represents a novel animal model that should prove useful for studies of H. pylori-induced chronic active gastritis and factors affecting gastric colonization by this pathogen.  相似文献   

8.
9.
BACKGROUND AND AIMS: Helicobacter pylori infection results in an active, chronic inflammation of the gastric mucosa. Previous studies have highlighted the importance of matrix metalloproteinases (MMPs) in diseases involving mucosal inflammation, prompting us to investigate MMP activity in H. pylori-induced gastritis. METHODS: Gastric biopsies were obtained from H. pylori-infected and uninfected volunteers, and MMP activity was assessed using substrate gel electrophoresis. MMP production was also evaluated by immunohistochemistry and real time-polymerase chain reaction. In parallel, tissue inhibitors of MMPs (TIMP) levels and TIMP-MMP complexes were examined in corresponding tissues using enzyme-linked immunosorbent assays and Western blotting. Finally, MMP production by gastric macrophages was determined after stimulation with H. pylori. RESULTS: Antral mucosa of H. pylori-infected subjects demonstrated a 19-fold higher MMP-9 activity than that of uninfected individuals. MMP-2 was present at lower levels, but was also increased in H. pylori-infected individuals, while there was no difference in the total levels of TIMP-1 and TIMP-2 between the groups of volunteers. Significant numbers of MMP-9-containing cells were only found in the H. pylori-infected antral mucosa. Tissue-resident macrophages were significantly increased in H. pylori-infected individuals, and double-staining showed MMP-9 colocalized to macrophages. Furthermore, gastric macrophages secreted MMP-9 in response to H. pylori bacteria. A corresponding 10-fold increase of gene expression of MMP-9 was seen in patients infected with H. pylori compared to uninfected individuals. CONCLUSIONS: Helicobacter pylori infection results in a substantial increase in MMP-9 and MMP-2 activity in the gastric mucosa, probably contributed to in large part by tissue-resident macrophages, while no changes were seen in the TIMP levels. The net increase in gastric MMP activity is likely to contribute to tissue damage during H. pylori-associated gastritis.  相似文献   

10.
We examined the impact of Helicobacter pylori infection on the murine gastric microbiota by culture and terminal-restriction fragment length polymorphism and found that neither acute nor chronic H. pylori infection substantially affected the gastric microbial composition. Interestingly, the total H. pylori burden detected by real-time PCR was significantly higher than that revealed by viable counts, suggesting that the antigenic load sustaining H. pylori-induced gastritis could be considerably higher than previously believed.  相似文献   

11.
BACKGROUND: Epidemiological studies show that high intake of food-bound vitamin C and E reduces the risk of gastric cancer. Whether dietary supplementation with antioxidant micronutrients interferes with Helicobacter pylori infection and associated diseases is unclear. The aim of this study was to investigate if dietary vitamin C or E supplementation influences the progression of gastritis, gastric mucosal nitrosative and oxidative protein damage, gastric mucosal lipid peroxidation, or gastric mucosal oxidative DNA damage in H. pylori-infected Mongolian gerbils. MATERIALS AND METHODS: Gerbils were divided into four groups: H. pylori-infected animals fed with vitamin C- or vitamin E-supplemented food, and infected and uninfected animals given standard rodent food. Subgroups of animals were killed at different time-points until 52 weeks postinfection. Concentrations of 3-nitrotyrosine and thiobarbituric acid-reactive substances (TBARS) in the gastric mucosa were determined with an immunodot blot and a fluorometric method, respectively. Mucosal concentrations of carbonyl carbons on proteins and 8-hydroxydeoxyguanosine were determined by enzyme-linked immunosorbent assay. Gastritis was scored semiquantitatively. RESULTS: Vitamin supplements had no effect on the colonization with H. pylori. Vitamin C as well as vitamin E supplements reduced mucosal 3-nitrotyrosine concentrations to normal levels in infected animals. Vitamin E supplements decreased mucosal protein carbonyls and TBARS in short-term gastritis. In addition, vitamin C supplements caused attenuated mucosal oxidative DNA damage and milder mucosal inflammation in short-term gastritis. CONCLUSION: Vitamin C or vitamin E supplementation leads to some short-term protective effects on H. pylori-induced gastritis in Mongolian gerbils. These effects seem to subside over time when the infection persists.  相似文献   

12.
BACKGROUND AND AIMS: Helicobacter pylori infection causes chronic gastritis and leads to peptic ulcer and gastric adenocarcinoma. An impaired gastric mucosal barrier could be involved in these processes. Our aim was to investigate gastric barrier function in H. pylori-induced gastritis. METHODS: Stripped gastric mucosal tissues of H. pylori-infected Mongolian gerbils (4 weeks and 70 weeks after inoculation, respectively) and controls were mounted in Ussing chambers. (51)Cr-EDTA (paracellular probe) and horseradish peroxidase (HRP, protein antigen) were used to assess mucosal barrier function. The electrophysiological parameters of the mucosa (transepithelial potential, short circuit current, and transepithelial resistance) were monitored as measurements of barrier integrity and viability. Tissue histology was performed to assess inflammation. RESULTS: In the antrum, both short-term gastritis [4.68 (3.88-5.74) x 10(-6) vs. control 2.86 (2.34-3.77) x 10(-6) cm/s, p <.001] and gastritis of long-standing [5.72 (3.88-10.94) x 10(-6) cm/s, p <.001 vs. control] showed increased permeability to (51)Cr-EDTA. In long-standing antral gastritis there was also an increased HRP flux [9.01 (2.98-45.02) vs. control 0.52 (0.06-1.20) pmol/h/cm(2), p <.001]. In the corpus, permeability to (51)Cr-EDTA was increased only in long-standing gastritis [4.63 (3.64-7.45) x 10(-6) vs. control 2.86 (2.12-3.98) x 10(-6) cm/s, p <.01]. Gastric mucosal permeability to (51)Cr-EDTA was correlated to histological inflammation and inflammatory activity. The levels of serum anti-H. pylori immunoglobulin G were positively correlated to HRP flux and (51)Cr-EDTA permeation. CONCLUSIONS: Helicobacter pylori-induced gastritis in Mongolian gerbils was associated with a long-standing gastric mucosal barrier dysfunction. The barrier defect extended from the antrum into the corpus over time. This impaired barrier function may contribute to perpetuation of chronic inflammation and may be involved in H. pylori-associated carcinogenesis.  相似文献   

13.
Structure, function and localization of Helicobacter pylori urease.   总被引:3,自引:0,他引:3  
Helicobacter pylori is the causative agent of most cases of gastritis. Once acquired, H. pylori establishes chronic persistent infection; it is this long-term infection that, is a subset of patients, leads to gastric or duodenal ulcer, gastric cancer or gastric MALT lymphoma. All fresh isolates of H. pylori express significant urease activity, which is essential to survival and pathogenesis of the bacterium. A significant fraction of urease is associated with the surface of H. pylori both in vivo and in vitro. Surface-associated urease is essential for H. pylori to resist exposure to acid in the presence of urea. The mechanism whereby urease becomes associated with the surface of H. pylori is unique. This process, which we term "altruistic autolysis," involves release of urease (and other cytoplasmic proteins) by genetically programmed autolysis with subsequent adsorption of the released urease onto the surface of neighboring intact bacteria. To our knowledge, this is the first evidence of essential communal behavior in pathogenic bacteria; such behavior is crucial to understanding the pathogenesis of H. pylori.  相似文献   

14.
BACKGROUND: Chronic Helicobacter pylori infection is the most common cause of gastric cancer. H. pylori induces oxidative stress while zinc deficiency results in increased sensitivity to it. In Ecuador, the prevalence of gastric cancer and zinc deficiency are high. We hypothesized that zinc deficiency in Ecuadorian people would cause increased H. pylori-induced inflammation in the gastric mucosa associated with lower tissue zinc concentrations. METHODS: Three hundred and fifty-two patients with dyspepsia underwent endoscopy to obtain gastric mucosa biopsies. Diagnosis of H. pylori infection and its severity, histopathology, mucosal zinc concentration, and inflammation intensity were determined. RESULTS: H. pylori-infected patients with non-atrophic chronic gastritis had lower concentrations of zinc in gastric mucosa than uninfected patients with the same type of gastritis (251.3 +/- 225.3 vs. 426.2 +/- 279.9 ng/mg of protein; p = .016). Considering all patients, the more severe the H. pylori infection, the higher the percentage of subjects with infiltration by polymorphonuclear (PMN) cells (p = .0001). Patients with high PMN infiltration had lower mucosal zinc concentrations than patients with low PMN infiltration (35.2 +/- 20.7 vs. 242.9 +/- 191.8 ng/mg of protein; p = .021). CONCLUSIONS: The degree of inflammation in H. pylori-induced gastritis appears to be modulated by gastric tissue zinc concentrations.  相似文献   

15.
16.
The Mongolian gerbil is an excellent animal model for Helicobacter pylori-induced gastritis in humans. In this study, initially low colonization rates of the H. pylori strains ATCC 43504, SS1, or HP87 inoculated into gerbils caused difficulties in establishing this model. In order to increase the colonization ability and pathogenicity, the clinical HP87 isolate was selected for adaptation to the gerbil stomach by multiple in vivo passages through gerbils. Development of gastritis was examined histologically at 4-52 weeks after infection. The proportion of gerbils which tested positive for H. pylori by culture at four weeks after inoculation gradually increased from 11.1% of gerbils inoculated with HP87 without prior in vivo passage (P0) to 100% of gerbils inoculated with HP87 with seven in vivo passages (P7). In addition, adaptation of HP87 resulted in more severe histopathological changes. Gerbils infected with adapted HP87 (P7) exhibited severe infiltration by monomorphonuclear and polymorphonuclear leukocytes in the mucosa, submucosa, and subserosa of the gastric antrum, as well as epithelial changes consisting of hyperplasia, erosion, and ulceration. Histopathological changes increased in severity from four to 52 weeks after infection. Adaptation of HP87 during its passages through gerbils could be due to genetic changes in bacterial colonization factors. Identification of these changes might be useful to understand the underlying mechanism of gastric adaptation and pathogenesis of H. pylori.  相似文献   

17.
Helicobacter pylori, T cells and cytokines: the "dangerous liaisons"   总被引:1,自引:0,他引:1  
Helicobacter pylori infection is the major cause of gastroduodenal pathologies, but only a minority of infected patients develop chronic and life threatening diseases, as peptic ulcer, gastric cancer, B-cell lymphoma, or autoimmune gastritis. The type of host immune response against H. pylori is crucial for the outcome of the infection. A predominant H. pylori-specific Th1 response, characterized by high IFN-gamma, TNF-alpha, and IL-12 production associates with peptic ulcer, whereas combined secretion of both Th1 and Th2 cytokines are present in uncomplicated gastritis. Gastric T cells from MALT lymphoma exhibit abnormal help for autologous B-cell proliferation and reduced perforin- and Fas-Fas ligand-mediated killing of B cells. In H. pylori-infected patients with autoimmune gastritis cytolytic T cells infiltrating the gastric mucosa cross-recognize different epitopes of H. pylori proteins and H+K+ ATPase autoantigen. These data suggest that peptic ulcer can be regarded as a Th1-driven immunopathological response to some H. pylori antigens, whereas deregulated and exhaustive H. pylori-induced T cell-dependent B-cell activation can support the onset of low-grade B-cell lymphoma. Alternatively, H. pylori infection may lead in some individuals to gastric autoimmunity via molecular mimicry.  相似文献   

18.
FK506 and dexamethasone were used to investigate whether or not immunosuppression affects H. pylori colonization and gastric mucosal damage induced by Helicobacter pylori in Mongolian gerbils. Two weeks after H. pylori infection, FK506 and dexamethasone or vehicle alone were subcutaneously administered once daily for the following 2 weeks. FK506 or vehicle alone was administered subcutaneously once daily for 5 weeks (1 week before and 4 weeks after infection). In H. pylori-infected animals for 4 weeks, hemorrhagic erosions and inflammatory responses (neutrophil infiltration and lymphoid follicle formation) were induced in gastric mucosa at an incidence of 100%. Both FK506 and dexamethasone administered for 2 weeks markedly reduced such mucosal changes. In these animals, H. pylori viability in the stomach was significantly elevated. FK506 administered for 5 weeks also significantly inhibited the hemorrhagic erosions, edema and neutrophil infiltration in the stomach. H. pylori viability was slightly elevated as compared with the control. It was concluded that the host immune responses might play dual roles both by deteriorating gastritis induced by H. pylori and by protecting against H. pylori infection in its early stage.  相似文献   

19.
Helicobacter pylori modulation of gastric acid   总被引:4,自引:0,他引:4  
Helicobacter pylori plays major causative roles in peptic ulcer disease and gastric cancer. Elevated acid secretion in patients with duodenal ulcers (DUs) contributes to duodenal injury, and diminished acid secretion in patients with gastric cancer allows carcinogen-producing bacteria to colonize the stomach. Eradication of H. pylori normalizes acid secretion both in hyper-secreting DU patients and hypo-secreting relatives of gastric cancer patients. Therefore, we and others have asked how H. pylori causes these disparate changes in acid secretion. H. pylori gastritis more or less restricted to the gastric antrum in DU patients is associated with increased acid secretion. This is probably because gastritis increases release of the antral acid-stimulating hormone gastrin and diminished mucosal expression of the inhibitory peptide somatostatin. Bacterial products and inflammatory cytokines including TNFalpha may cause these changes in endocrine function. Gastritis involving the gastric corpus tends to diminish acid secretion, probably because bacterial products and cytokines including IL-1 inhibit parietal cells. Pharmacological inhibition of acid secretion increases corpus gastritis in H. pylori-infected subjects, so it is envisaged that gastric hypo-secretion of any cause might become self-perpetuating. H. pylori-associated mucosal atrophy will also contribute to acid hypo-secretion and is more likely in when the diet is high in salt or lacking in antioxidant vitamins. Data on gastric acid secretion in patients with esophagitis are limited but suggest that acid secretion is normal or slightly diminished. Nevertheless, H. pylori infection may be relevant to the management of esophagitis because: (i) H. pylori infection increases the pH-elevating effect of acid inhibiting drugs; (ii) proton pump inhibitors may increase the tendency of H. pylori to cause atrophic gastritis; and (iii) successful eradication of H. pylori is reported to increase the likelihood of esophagitis developing in patients who had DU disease. Points (ii) and (iii) remain controversial and more work is clearly required to elucidate the relationship between H. pylori, acid secretion, gastric mucosa atrophy and esophagitis.  相似文献   

20.
Park S  Han SU  Lee KM  Park KH  Cho SW  Hahm KB 《Helicobacter》2007,12(1):49-58
BACKGROUND: Arachidonic acid metabolites have been considered as pivotal mediators in Helicobacter pylori-induced inflammatory response, which are mainly metabolized by two distinct enzymes: cyclooxygenase (COX) and lipoxygenase (LOX). While COX has become well known to play a key role in either carcinogenesis or inflammation related to H. pylori infection, little is known regarding the implication of LOX in H. pylori infection. In this study, we evaluated the roles of 5-LOX and its metabolites in H. pylori-induced host responses and further a potential beneficial action of specific LOX inhibitors against H. pylori infection. MATERIALS AND METHODS: Expressions of cytosolic phospholipase A(2) (cPLA(2)), COX-2, and 5-LOX after H. pylori infection were evaluated by immunofluorescence staining and Western blotting. Synthesis of LOX metabolites was measured with reversed-phase high-performance liquid chromatography. For analyzing the influence of 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA) and geraniin, on H. pylori-induced inflammatory responses, RNase protection assay and RT-PCR were performed. RESULTS: H. pylori stimulated the translocation of cPLA(2) from cytoplasm to nucleus and increased the biosynthesis of hydroxyeicosatetraenoic acids (HETEs) as a predominant form of 5S-HETE in gastric epithelium. NDGA exerted a strong suppression activity of H. pylori-induced 5-LOX signaling. The administration of LOX inhibitors was related with down-expression of proinflammatory mediators such as interleukin-8 and tumor necrosis factor-alpha in both H. pylori-infected gastric epithelial cells and macrophage cells. CONCLUSION: LOX modulation with its specific inhibitors could impose significant anti-inflammatory responses after H. pylori infection, based on the fact that H. pylori infection provoked gastric inflammation through metabolizing arachidonic acid by the 5-LOX pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号