共查询到20条相似文献,搜索用时 15 毫秒
1.
The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases 总被引:8,自引:0,他引:8
Laederich MB Funes-Duran M Yen L Ingalla E Wu X Carraway KL Sweeney C 《The Journal of biological chemistry》2004,279(45):47050-47056
The molecular mechanisms by which mammalian receptor tyrosine kinases are negatively regulated remain largely unexplored. Previous genetic and biochemical studies indicate that Kekkon-1, a transmembrane protein containing leucine-rich repeats and an immunoglobulin-like domain in its extracellular region, acts as a feedback negative regulator of epidermal growth factor (EGF) receptor signaling in Drosophila melanogaster development. Here we tested whether the related human LRIG1 (also called Lig-1) protein can act as a negative regulator of EGF receptor and its relatives, ErbB2, ErbB3, and ErbB4. We observed that in co-transfected 293T cells, LRIG1 forms a complex with each of the ErbB receptors independent of growth factor binding. We further observed that co-expression of LRIG1 with EGF receptor suppresses cellular receptor levels, shortens receptor half-life, and enhances ligand-stimulated receptor ubiquitination. Finally, we observed that co-expression of LRIG1 suppresses EGF-stimulated transformation of NIH3T3 fibroblasts and that the inducible expression of LRIG1 in PC3 prostate tumor cells suppresses EGF- and neuregulin-1-stimulated cell cycle progression. Our observations indicate that LRIG1 is a negative regulator of the ErbB family of receptor tyrosine kinases and suggest that LRIG1-mediated receptor ubiquitination and degradation may contribute to the suppression of ErbB receptor function. 相似文献
2.
Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division 总被引:1,自引:0,他引:1
Mitochondrial fission is mediated by the dynamin-related GTPase, Dnm1p, which assembles on the mitochondrial outer membrane into punctate structures associated with sites of membrane constriction and fission. We have identified additional nuclear genes required for mitochondrial fission, termed MDV (for mitochondrial division). MDV1 encodes a predicted soluble protein, containing a coiled-coil motif and seven COOH-terminal WD repeats. Genetic and two-hybrid analyses indicate that Mdv1p interacts with Dnm1p to mediate mitochondrial fission. In addition, Mdv1p colocalizes with Dnm1p in fission-mediating punctate structures on the mitochondrial outer membrane. Whereas localization of Mdv1p to these structures requires Dnm1p, localization of Mdv1p to mitochondrial membranes does not. This indicates that Mdv1p possesses a Dnm1p-independent mitochondrial targeting signal. Dnm1p-independent targeting of Mdv1p to mitochondria requires MDV2. Our data indicate that MDV2 also functions separately to regulate the assembly of Dnm1p into punctate structures. In contrast, Mdv1p is not required for the assembly of Dnm1p, but Dnm1p-containing punctate structures lacking Mdv1p are not able to complete division. Our studies suggest that mitochondrial fission is a multi-step process in which Mdv2p regulates the assembly of Dnm1p into punctate structures and together with Mdv1p functions later during fission to facilitate Dnm1p-dependent mitochondrial membrane constriction and/or division. 相似文献
3.
The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. 总被引:4,自引:0,他引:4 下载免费PDF全文
The Caenorhabditis elegans sex determination gene, tra-2, is translationally regulated by elements in the 3'-untranslated region called TGEs. TGEs govern the translation of mRNAs in both invertebrates and vertebrates, indicating that this is a highly conserved mechanism for controlling gene activity. A factor called DRF, found in worm extracts binds the TGEs and may be a repressor of translation. Using the yeast three-hybrid screen and RNA gel shift analysis, we have found that the protein GLD-1, a germline-specific protein and a member of the STAR family of RNA-binding proteins, specifically binds to the TGEs. GLD-1 is essential for oogenesis, and is also necessary for spermatogenesis and inhibition of germ cell proliferation. Several lines of evidence demonstrate that GLD-1 is a translational repressor acting through the TGEs to repress tra-2 translation. GLD-1 can repress the translation of reporter RNAs via the TGEs both in vitro and in vivo, and is required to maintain low TRA-2A protein levels in the germline. Genetic analysis indicates that GLD-1 acts upstream of the TGE control. Finally, we show that endogenous GLD-1 is a component of DRF. The conservation of the TGE control and the STAR family suggests that at least a subset of STAR proteins may work through the TGEs to control translation. 相似文献
4.
Gumienny TL MacNeil LT Wang H de Bono M Wrana JL Padgett RW 《Current biology : CB》2007,17(2):159-164
Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways. 相似文献
5.
6.
7.
The Caenorhabditis elegans cell-cycle regulator ZYG-11 defines a conserved family of CUL-2 complex components 下载免费PDF全文
The cullin CUL-2 is a crucial component of a subclass of multisubunit cullin-RING ubiquitin-ligases. The specificity of CUL-2-based complexes is provided by variable substrate-recognition subunits that bind to specific substrates. In Caenorhabditis elegans, CUL-2 regulates several key processes in cell division and embryonic development, including meiotic progression, anterior-posterior polarity and mitotic chromatin condensation. However, the substrate recognition subunits that work in these CUL-2-dependent processes were unknown. Here, we present evidence that ZYG-11 is the substrate-recognition subunit for a CUL-2-based complex that regulates these functions. We show that ZYG-11 interacts with CUL-2 in vivo and binds to the complex adaptor protein Elongin C using a nematode variant of the VHL-box motif. We show that the ZYG11 gene family encompasses two main branches in metazoa, and provide evidence that members of the extended ZYG11 family in nematodes and humans are conserved components of CUL2-based ubiquitin-ligases. 相似文献
8.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal. 相似文献
9.
Cloning of a yolk protein gene family from Caenorhabditis elegans 总被引:12,自引:0,他引:12
T Blumenthal M Squire S Kirtland J Cane M Donegan J Spieth W Sharrock 《Journal of molecular biology》1984,174(1):1-18
A novel family of large, imperfectly repeated DNA sequences has been found in Escherichia coli. Two members of this family, rhsA and rhsB, occur as direct repeats, flanking the pit glyS xyl segment of the chromosome. Unequal sister-chromatid crossing over between rhsA and rhsB accounts for the frequent tandem duplication of the glyS locus that has been observed by various workers. This unequal recombination is recA-dependent. The rhsA locus is operationally defined as the segment between xyl and mtl that is repeated at other chromosomal locations. Using this definition, rhsA extends minimally 5500 base-pairs; 3800 base-pairs of rhsA are sufficiently homologous to rhsB to form an S1 nuclease-resistant heteroduplex with it. The rhsA sequence also exhibits internal repetition. At least one additional rhs sequence occurs in the E. coli chromosome unlinked to either rhsA or rhsB. Southern analysis of restriction digests of genomic DNA from E. coli strains C and B/5 showed that both of these strains have rhs hybridizable patterns similar to strain K-12, but the rhs sequence is absent in Salmonella typhimurium. The function of the rhs sequences has not been discovered. In the course of this work we developed a technique, termed "transductional walking", by which chromosomal DNA adjacent to a previously cloned DNA segment can be cloned through genetic procedures. 相似文献
10.
Manlandro CM Palanivel VR Schorr EB Mihatov N Antony AA Rosenwald AG 《FEMS yeast research》2012,12(6):637-650
Using site-directed mutants of ARL1 predicted to alter nucleotide binding, we examined phenotypes associated with the loss of ARL1 , including effects on membrane traffic and K (+) homeostasis. The GTP-restricted allele, ARL[Q72L] , complemented the membrane traffic phenotype (CPY secretion), but not the K (+) homeostasis phenotypes (sensitivity to hygromycin B, steady-state levels of K (+) , and accumulation of (86) Rb (+) ), while the XTP-restricted mutant, ARL1[D130N] , complemented the ion phenotypes, but not the membrane traffic phenotype. A GDP-restricted allele, ARL1[T32N] , did not effectively complement either phenotype. These results are consistent with a model in which Arl1 has three different conformations in vivo. We also explored the relationship between ARL1 and MON2 using the synthetic lethal phenotype exhibited by these two genes and demonstrated that MON2 is a negative regulator of the GTP-restricted allele of ARL1 , ARL1[Q72L] . Finally, we constructed several new alleles predicted to alter binding of Arl1 to the sole GRIP domain containing protein in yeast, Imh1, and found that ARL1[F52G] and ARL1[Y82G] were unable to complement the loss of ARL1 with respect to either the membrane traffic or K (+) homeostasis phenotypes. Our study expands understanding of the roles of Arl1 in vivo. 相似文献
11.
Fiegen D Haeusler LC Blumenstein L Herbrand U Dvorsky R Vetter IR Ahmadian MR 《The Journal of biological chemistry》2004,279(6):4743-4749
Rac1b was recently identified in malignant colorectal tumors as an alternative splice variant of Rac1 containing a 19-amino acid insertion next to the switch II region. The structures of Rac1b in the GDP- and the GppNHp-bound forms, determined at a resolution of 1.75 A, reveal that the insertion induces an open switch I conformation and a highly mobile switch II. As a consequence, Rac1b has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. Interestingly, Rac1b is able to bind the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction. The presented study provides insights into the structural and biochemical mechanism of a self-activating GTPase. 相似文献
12.
Masashi Ikeno Nobutaka Suzuki Megumi Kamiya Yuji Takahashi Jun Kudoh Tsuneko Okazaki 《Nucleic acids research》2012,40(21):10742-10752
Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes. 相似文献
13.
BACKGROUND: The immune response is regulated through a tightly controlled cytokine network. The counteracting balance between protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activity regulates intracellular signaling in the immune system initiated by these extracellular polypeptides. Mice deficient for the T cell protein tyrosine phosphatase (TCPTP) display gross defects in the hematopoietic compartment, indicating a critical role for TCPTP in the regulation of immune homeostasis. To date, the molecular basis underlying this phenotype has not been reported. RESULTS: We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP. Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells. In keeping with a negative regulatory role for TCPTP in cytokine signaling, expression of TCPTP in T cells abrogated phosphorylation of STAT5 following interleukin (IL)-2 stimulation. TCPTP-deficient lymphocytes treated with IL-2 had increased levels of tyrosine-phosphorylated STAT5, and thymocytes treated with interferon (IFN)-alpha or IFN-gamma had increased tyrosine-phosphorylated STAT1. Hyperphosphorylation of JAK1 and elevated expression of iNOS was observed in IFN-gamma-treated, TCPTP-deficient, bone marrow-derived macrophages. CONCLUSIONS: We have identified JAK1 and JAK3 as physiological substrates of TCPTP. These results indicate a negative regulatory role for TCPTP in cytokine signaling and provide insight into the molecular defect underlying the phenotype of TCPTP-deficient animals. 相似文献
14.
15.
16.
17.
Carr AN Schmidt AG Suzuki Y del Monte F Sato Y Lanner C Breeden K Jing SL Allen PB Greengard P Yatani A Hoit BD Grupp IL Hajjar RJ DePaoli-Roach AA Kranias EG 《Molecular and cellular biology》2002,22(12):4124-4135
Increases in type 1 phosphatase (PP1) activity have been observed in end stage human heart failure, but the role of this enzyme in cardiac function is unknown. To elucidate the functional significance of increased PP1 activity, we generated models with (i) overexpression of the catalytic subunit of PP1 in murine hearts and (ii) ablation of the PP1-specific inhibitor. Overexpression of PP1 (threefold) was associated with depressed cardiac function, dilated cardiomyopathy, and premature mortality, consistent with heart failure. Ablation of the inhibitor was associated with moderate increases in PP1 activity (23%) and impaired beta-adrenergic contractile responses. Extension of these findings to human heart failure indicated that the increased PP1 activity may be partially due to dephosphorylation or inactivation of its inhibitor. Indeed, expression of a constitutively active inhibitor was associated with rescue of beta-adrenergic responsiveness in failing human myocytes. Thus, PP1 is an important regulator of cardiac function, and inhibition of its activity may represent a novel therapeutic target in heart failure. 相似文献
18.
The gelsolin family of proteins is a major class of actin regulatory proteins that sever, cap, and nucleate actin filaments in a calcium-dependent manner and are involved in various cellular processes. Typically, gelsolin-related proteins have three or six repeats of gelsolin-like (G) domain, and each domain plays a distinct role in severing, capping, and nucleation. The Caenorhabditis elegans gelsolin-like protein-1 (gsnl-1) gene encodes an unconventional gelsolin-related protein with four G domains. Sequence alignment suggests that GSNL-1 lacks two G domains that are equivalent to fourth and fifth G domains of gelsolin. In vitro, GSNL-1 severed actin filaments and capped the barbed end in a calcium-dependent manner. However, unlike gelsolin, GSNL-1 remained bound to the side of F-actin with a submicromolar affinity and did not nucleate actin polymerization, although it bound to G-actin with high affinity. These results indicate that GSNL-1 is a novel member of the gelsolin family of actin regulatory proteins and provide new insight into functional diversity and evolution of gelsolin-related proteins. 相似文献
19.
20.
All metazoan genomes encode multiple RAS GTPase activating proteins (RasGAPs) that negatively regulate the conserved RAS/MAPK signaling pathway. In mammals, several RasGAPs exhibit tumor suppressor activity by preventing excess RAS signal transduction. We have identified gap-3 as the to date missing Caenorhabditiselegans member of the p120 RasGAP family. By studying the genetic interaction of gap-3 with the two previously identified RasGAPs gap-1 and gap-2, we find that different combinations of RasGAPs are used to repress LET-60 RAS signaling depending on the cellular context. GAP-3 is the predominant negative regulator of RAS during meiotic progression of the germ cells, while GAP-1 is the key inhibitor of RAS during vulval induction. In other tissues such as the sex myoblasts or the chemosensory neurons, all three RasGAPs act in concert. The C. elegans RasGAPs have thus undergone partial specialization after gene duplication to allow the differential regulation of the RAS/MAPK signaling pathway in different cell types. A similar tissue specialization of the human tumor suppressor genes may explain the strong bias in the type of cancer they promote when mutated. 相似文献